计算机与现代化 ›› 2025, Vol. 0 ›› Issue (08): 1-9.doi: 10.3969/j.issn.1006-2475.2025.08.001

• 人工智能 •    下一篇

基于滚动优化的主动配电网动态故障恢复方法

  


  1. (广东电网有限责任公司电力调度控制中心,广东 广州 510600)
  • 出版日期:2025-08-27 发布日期:2025-08-27
  • 作者简介: 作者简介:余志文(1974—),男,湖北宜昌人,高级工程师,博士,研究方向:调度自动化系统运行管理,网络安全管理,E-mail: yuzhiwen1974@163.com。
  • 基金资助:
    基金项目:南方电网公司科技项目(036000KK52222018(GDKJXM20222155))
      

An Active Distribution Network Dynamic Fault Recovery Method Based on Rolling Optimization

#br#   


  1. (Power Dispatching and Control Center, Guangdong Power Grid Co., Ltd., Guangzhou 510600, China) 
  • Online:2025-08-27 Published:2025-08-27

摘要:
摘要:为充分发挥分布式光伏参与配电网故障恢复阶段的应急供电潜力,降低源荷出力不确定性对调控方案可靠性的影响,本文提出一种基于滚动优化的主动配电网动态故障恢复方法。首先,利用RTH-CNN-LSTM算法对分布式光伏出力进行短时预测,获取故障恢复阶段分布式光伏的预测出力;随后,综合考虑故障线路维修所需时间、物料约束以及故障恢复阶段节点电压、潮流等配电网运行安全约束,从负荷恢复率、策略经济性和系统可靠性出发,结合分布式光伏预测出力、配电网联络开关状态和配电网网络拓扑,构建配电网故障恢复模型;最后,基于滚动优化框架,采用红尾鹰优化算法(RTH)完成故障恢复模型的动态求解,获取线路维修顺序、联络开关闭合和负荷切除量的最佳动作策略。以IEEE 123节点测试配电网为例,仿真实验结果表明,所提滚动优化方法可有效降低分布式光伏出力不确定性对恢复方案有效性的影响,显著提升故障恢复方案的可靠性和高效性。




关键词: 关键词:主动配电网, 光伏预测, 故障恢复, 网络重构, 滚动优化

Abstract: Abstract: To fully harness the emergency power supply potential of distributed photovoltaics in the fault recovery stage of the distribution network, mitigate the impact of uncertainty in source-load output on the reliability of control schemes, this paper proposes an active distribution network dynamic fault recovery method based on a rolling optimization framework. Initially, employing the RTH-CNN-LSTM algorithm for short-term forecasting of distributed photovoltaic output to obtain predicted output during the fault recovery phase. Subsequently, considering the time required for fault line inspection, material constraints, and operational safety constraints of nodes, voltages, and power flow in the distribution network during the fault recovery phase, the fault recovery model for the distribution network is constructed from the perspectives of load recovery rate, strategic economics, and system reliability, integrating distributed photovoltaic forecast output, switch states, and network topology. Lastly, utilizing the rolling optimization framework, the Red-Tailed Hawk (RTH) optimization algorithm is employed to dynamically solve the fault recovery model, obtaining the optimal action strategy for line maintenance sequence, switch status, and load shedding amount. Using the IEEE 123-node test distribution network as a case study, simulation results demonstrate that the proposed rolling optimization method effectively reduces the impact of distributed photovoltaic output uncertainty on the effectiveness of recovery schemes, significantly enhancing the reliability and efficiency of fault recovery schemes.

Key words: Key words: active distribution network, photovoltaic prediction, fault recovery, network reconstruction, rolling optimization

中图分类号: