计算机与现代化 ›› 2025, Vol. 0 ›› Issue (03): 45-51.doi: 10.3969/j.issn.1006-2475.2025.03.007

• 算法设计与分析 • 上一篇    下一篇

基于多源无监督域适应的辐射源个体识别方法


  

  1. (中国人民解放军陆军工程大学指挥控制工程学院,江苏 南京 210007)
  • 出版日期:2025-03-28 发布日期:2025-03-28

Specific Emitter Identification Method Based on Multi-source Unsupervised Domain Adaptation

  1. (School of Command and Control Engineering, Army Engineering University of the PLA, Nanjing 210007, China)
  • Online:2025-03-28 Published:2025-03-28

摘要: 受传输环境以及辐射源设备工作状态变化的影响,待识别信号与训练信号的信道噪声会有所不同,这会导致训练好的模型识别准确率下降。为了解决这个问题,大多数研究使用了单源无监督域适应方法,将特定噪声下的带标签样本用于待识别目标噪声下无标签样本的学习。一方面,在实际情况中收集的带标签数据可能来自多个源域;另一方面,目标域通常可以看作是多个源域的组合。为了探索基于多源无监督域适应的辐射源个体识别方法,本文提出一种基于原型对齐和对比学习的多源无监督域适应方法,充分学习和利用域内的语义结构信息。首先,使用多个源域和目标域的原型对齐方法来学习组合多个源域的特征表示并设计一个新的伪标签策略。然后,设计一种加权的域内样本到原型的对比学习方法来增加类内的紧凑性和类间的可区分性,对比学习增加了原型对齐的准确性。在公开数据集上的实验结果表明,本文方法在目标域为4 db和8 db的任务中取得了最好的效果,准确率分别为94.1%和97.4%,相比现有的方法分别提高了2.4和1.2个百分点,表明了本文方法的有效性。

关键词: 辐射源个体识别, 多源无监督域适应, 单源无监督域适应, 原型, 对比学习

Abstract:  Due to the influence of the transmission environment and the change in the working state of the radiation source equipment, the channel noise of the signal to be identified and the training signal will be different, which will lead to the decrease of the recognition accuracy of the trained model. In order to solve this problem, most studies use single-source unsupervised domain adaptation method to use labeled samples under specific noise for the learning of unlabeled samples under the target noise to be identified. On the one hand, the labeled data collected in the actual situation may come from multiple source domains. On the other hand, the target domain can usually be regarded as a combination of multiple source domains. In order to explore the specific emitter recognition method based on multi-source unsupervised domain adaptation, a multi-source unsupervised domain adaptation method based on prototype alignment and contrast learning is proposed, which fully learns and utilizes the semantic structure information in the domain. Firstly, a prototype alignment method of multiple source domains and target domains is used to learn the feature representation of multiple source domains and a new pseudo-label strategy is designed. Then, this paper designs a weighted intra-domain sample-to-prototype comparative learning method to increase intra-class compactness and inter-class distinguishability. The experimental results on public datasets show that the proposed method achieves the best results in tasks with target domains of 4 db and 8 db, and the accuracy rates are 94.1 % and 97.4 %, respectively, which are 2.4 and 1.2 percentage points higher than the existing methods, indicating the effectiveness of the proposed method.

Key words: specific emitter identification, multi-source unsupervised domain adaptation, single-source unsupervised domain adaptation, prototype, comparative learning

中图分类号: