计算机与现代化 ›› 2024, Vol. 0 ›› Issue (06): 64-69.doi: 10.3969/j.issn.1006-2475.2024.06.011

• 算法设计与分析 • 上一篇    下一篇

基于嵌套蚁群算法的机器人拣货作业联合优化#br# #br#

  

  1. (西安工业大学机电工程学院,陕西 西安,710021)
  • 出版日期:2024-06-30 发布日期:2024-07-17
  • 作者简介: 作者简介:李雨菲(1991—),女,陕西西安人,学历,工程师,研究方向:物流信息与优化调度,E-mail: liyufei@xatu.edu.cn; 通信作者:闫莉(1973—),女,安徽亳州人,教授,研究方向:数字化智能物流,E-mail: yanli@xatu.edu.cn; 曾彦萍(1999—),女,海南澄迈人,本科,研究方向:数字化智能物流,E-mail: 1761949208@qq.com; 刘云横(1996—),男,陕西西安人,硕士研究生,研究方向:智能物流与大数据,E-mail: 348516086@qq.com。
  • 基金资助:
    陕西省科技发展计划项目(2023-YBGY-146)

Joint optimization of Picking Operation Based on Nested Ant Colony Algorithm


  1. (School of Mechatronic Engineering, Xi'an Technological University, Xi'an 710021, China)
  • Online:2024-06-30 Published:2024-07-17

摘要: 摘要:针对物流仓储中心拣货作业过程中系统订单分批和拣货路径分步拣选效率低的问题,提出一种基于嵌套蚁群的订单分批和路径优化的联合拣货策略。首先,建立以最小化总路径为目标的订单分批与拣货路径联合优化模型;然后,考虑双重优化的复杂性,设计一种嵌套蚁群算法对模型进行求解,以订单分批模型为基准不断优化订单分批结果,得出最优分批集合单,其优化集合单再嵌套蚁群算法实现拣货路径优化。为验证该算法对随机订单有效性,抽取某一天17:00-18:00时段内既有货架区货物又有地堆区货物的43个订单算例进行仿真实验,与传统订单分批和拣货路径分步拣选策略相比,基于嵌套蚁群算法的拣货作业联合优化模型的随机订单拣货路径更短、拣货时间更少,经过联合优化后,机器人总拣选距离缩短了170 m。基于嵌套蚁群算法的拣货作业联合优化模型和其求解算法可以有效解决订单分批与拣货路径联合优化问题,为配送中心拣选系统的优化提供依据。

关键词:
关键词:嵌套蚁群算法,
订单分批, 动态拣选, 联合优化

Abstract:
Abstract: Aiming at the problem of low efficiency of systematic order batching and picking path step-by-step picking in the process of picking operation of logistics warehousing center, a joint picking strategy based on nested ant colony batching and path optimization is proposed. Firstly, a joint optimization model of order batch and picking route with the goal of minimizing the total path is established; Then, considering the complexity of double optimization, a nested ant colony algorithm is designed to solve the model. The order batching model is used as the benchmark to continuously optimize the order batch results, obtaining the optimal batch collection order. Subsequently, The nested ant colony algorithm is applied to realize the picking path optimization. In order to verify the effectiveness of the algorithm on random orders, 43 order studies with both shelf area and ground pile area goods from a certain day between 17:00 and 18:00 were sampled for simulation experiments. Compared with the traditional order batching and picking path step-by-step picking strategy, the random order picking path based on the nested ant colony algorithm joint optimization model of picking operation is shorter, the picking time is less. After joint optimization, the total picking distance is shortened by 170 m. The joint optimization model of picking operation based on nested ant colony algorithm and its solution algorithm can effectively adress the problem of joint optimization of order batching and picking path, and provide a basis for the optimization of the picking system in the distribution center.

Key words: Key words: nested ant colony algorithm, order batching, dynamic picking, joint optimization

中图分类号: