计算机与现代化 ›› 2024, Vol. 0 ›› Issue (05): 46-54.doi: 10.3969/j.issn.1006-2475.2024.05.009

• 信息安全 • 上一篇    下一篇

基于标签传播的轨迹兴趣点挖掘及隐私保护

  

  1. (1.中国交通第二公路工程局第六工程公司,陕西 西安710000; 2.长安大学信息工程学院,陕西 西安 710064)
  • 出版日期:2024-05-29 发布日期:2024-06-12
  • 作者简介: 作者简介:袁红伟(1975—),男,陕西汉中人,高级工程师,本科,研究方向:智能交通,道路桥梁监测,E-mail: 4080786@qq.com; 常利军(1979—),男,陕西榆林人,高级工程师,本科,研究方向:智能交通,公路规划管理; 通信作者:樊娜(1978—),女,陕西渭南人,副教授,博士,研究方向:智能交通,E-mail: fnsea@163.com。
  • 基金资助:
    陕西省重点研发计划项目(2022GY-039, 2022GY-030)

Trajectory Interest Points Mining Based on Label Propagation and Privacy Protection

  1. (1. The Sixth Engineering Company of CCCC Second Highway Engineering Co., Ltd., Xi’an 710000, China;
    2. School of Information Engineering, Chang’an University, Xi’an 710064, China)
  • Online:2024-05-29 Published:2024-06-12

摘要: 摘要:随着全球定位系统和移动数据采集设备的普及,产生了大量的轨迹数据,挖掘轨迹数据中潜在信息具有重要的现实意义,但在挖掘过程中存在着隐私信息泄露的危险。因此,本文提出一种基于标签传播的轨迹兴趣点挖掘及数据隐私保护机制,该机制将原始轨迹数据集进行预处理之后,进行基于密度的初次聚类,再运用改进的标签传播算法进行再次聚类,此算法在挖掘过程融入轨迹数据的多维度信息,提高了数据的利用率和兴趣点的精确度。同时,该机制融入一种基于改进的指数机制的差分隐私保护算法,此算法可以有效地保护用户的隐私信息不被泄露。对比实验结果表明,本文提出的方法与现有方法相比,具有更好的性能优势,同时有效地解决了用户隐私信息泄露的问题。







关键词: 关键词:数据挖掘, 兴趣点, 轨迹聚类, 差分隐私

Abstract: Abstract: With the popularization of global positioning systems and mobile data collection devices, a large amount of trajectory data has been generated. Mining potential information in trajectory data has important practical significance, but there is a risk of privacy information leakage during the mining process. Therefore, we propose a trajectory interest point mining and data privacy protection mechanism based on label propagation. This mechanism preprocesses the original trajectory dataset, performs density based initial clustering, and then uses an improved label propagation algorithm for clustering. This algorithm incorporates multi-dimensional information of trajectory data in the mining process, improving data utilization and accuracy of interest points. At the same time, a differential privacy protection algorithm based on an improved exponential mechanism is proposed, which can effectively protect users’ privacy information from being leaked. The comparative experimental results show that the proposed method has better performance advantages compared to existing methods, and effectively solves the problem of user privacy information leakage.

Key words: Key words: data mining, points of interest, trajectory clustering, differential privacy

中图分类号: