计算机与现代化 ›› 2024, Vol. 0 ›› Issue (05): 115-119.doi: 10.3969/j.issn.1006-2475.2024.05.020

• 图像处理 • 上一篇    下一篇

胎盘超声图像分割

  



  1. (1.武汉工程大学计算机科学与工程学院,湖北 武汉 430205; 2. 武汉市硚口区妇幼保健院,湖北 武汉 430205)
  • 出版日期:2024-05-29 发布日期:2024-06-12
  • 作者简介: 作者简介:徐成(1998—),男,湖北武汉人,硕士研究生,研究方向:医学图像分割,E-mail: 1027641921@qq.com; 通信作者:张芸(1981—),女,湖北武汉人,主治医师,研究方向:超声影像学,E-mail: 542924344@qq.com。
  • 基金资助:
    武汉市卫生健康委科研项目(WX21Q66); 国家自然科学基金资助项目(61502355); 湖北省三峡实验室创新基金资助项目(SC215001)
       

Placenta Ultrasound Image Segmentation

#br#   



  1. (1. School of Computer Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China; 
    2. Wuhan Qiaokou Maternal and Child Health Hospital, Wuhan 430205, China)
  • Online:2024-05-29 Published:2024-06-12

摘要:
摘要:妊娠早期的胎盘形状和大小与胎儿生长等临床结果紧密相关。针对人工手动标注胎盘轮廓较为耗时的分割方法,设计一种新型深度学习分割网络:DEC-U-Net,该模型设计依据U-Net架构,在U-Net下采样阶段使用深度超参数化卷积代替2D卷积并且联合ECA(Efficient Channel Attention)注意力机制,在不过多引入参数量的同时提高对胎盘细节特征识别的准确度。将交叉注意力机制引入跳跃链接,解决胎盘边界模糊、对比度不均等问题。与普通U-Net网络相比,本文算法分别在交并比(IoU)、召回率(Recall)、精确度(Precision)、Dice系数上提升4.14、9.59、6.2、16.41个百分点。实验结果表明,改进后的网络模型具有较好的分割效果,能够将超声图像中的胎盘进行精确分割。


关键词: 关键词:胎儿超声图像, 胎盘检测, Do-Conv, ECA注意力, MHCA

Abstract: Abstract: The shape and size of the placenta in early pregnancy are closely related to clinical outcomes such as fetal growth. Aiming at the time-consuming interactive segmentation method for three-dimensional ultrasound (3DUS) detection of placental size, a new deep learning segmentation network, DEC-U-Net, is designed based on the U-Net architecture. In the U-Net downsampling stage, deep hyperparametric convolution is used instead of 2D convolution and combined with the ECA attention mechanism. However, the accuracy of placenta detailed feature recognition is improved while introducing more parameter quantities. The cross attention mechanism is introduced into jump linking to solve the problems of blurred placental boundaries and uneven contrast. Compared with ordinary U-Net networks, the algorithm in this paper improves the intersection and merge ratio (IoU), recall rate (Recall), accuracy (Precision), and Dice coefficient by 4.14, 9.59, 6.2, and 16.41 percentage points, respectively. The experimental results show that the improved network model has a good segmentation effect and can accurately segment the placenta in ultrasound images.

Key words: Key words: fetal ultrasound images, placental testing, Do-Conv, ECA attention, MHCA

中图分类号: