计算机与现代化 ›› 2024, Vol. 0 ›› Issue (04): 5-11.doi: 10.3969/j.issn.1006-2475.2024.04.002

• 算法设计与分析 • 上一篇    下一篇

基于AP聚类算法的联邦学习聚合算法

  



  1. (华南师范大学计算机学院,广东 广州 510631)
  • 出版日期:2024-04-30 发布日期:2024-05-13
  • 基金资助:
    基金项目:广东省重大科技专项(2016B030305003)

Federated Learning Aggregation Algorithm Based on AP Clustering Algorithm



  1. (School of Computer Science, South China Normal University, Guangzhou 510631, China)
  • Online:2024-04-30 Published:2024-05-13

摘要:
摘要:在传统的联邦学习中,多个客户端的本地模型由其隐私数据独立训练,中心服务器通过聚合本地模型生成共享的全局模型。然而,由于非独立同分布(Non-IID)数据等统计异质性,一个全局模型往往无法适应每个客户端。为了解决这个问题,本文提出一种针对Non-IID数据的基于AP聚类算法的联邦学习聚合算法(APFL)。在APFL中,服务器会根据客户端的数据特征,计算出每个客户端之间的相似度矩阵,再利用AP聚类算法对客户端划分不同的集群,构建多中心框架,为每个客户端计算出适合的个性化模型权重。将本文算法在FMINST数据集和CIFAR10数据集上进行实验,与传统联邦学习FedAvg相比,APFL在FMNIST数据集上提升了1.88个百分点,在CIFAR10数据集上提升了6.08个百分点。实验结果表明,本文所提出的APFL在Non-IID数据上可以提高联邦学习的精度性能。



关键词: 关键词:联邦学习, 非独立同分布, AP聚类算法

Abstract:
Abstract: In traditional federation learning, multiple clients’ local models are trained independently from their private data, and the central server generates a shared global model by aggregating the local models. However, due to statistical heterogeneity such as non-independent identically distributed (Non-IID) data, a global model often cannot be adapted to each client. To address this problem, this paper proposes an AP clustering algorithm-based federation learning aggregation algorithm (APFL) for Non-IID data. In APFL, the server calculates the similarity matrix between each client based on the data characteristics of the clients, and then uses the AP clustering algorithm to divide the clients into different clusters and construct a polycentric framework to calculate the suitable personalized model weights for each client. This algorithm is experimented on FMINST dataset and CIFAR10 dataset, and APFL improves 1.88 percentage points on FMNIST dataset and 6.08 percentage points on CIFAR10 dataset compared with traditional Federated Learning FedAvg. The results show that the proposed APFL improves the accuracy performance of Federated Learning on Non-IID data in this paper.

Key words: Key words: federal learning: non-independent identical distribution: AP clustering algorithm

中图分类号: