[1] 吴海伟,王晓忠,朱法顺. 一种基于遗传算法的智能电网调度方法[J]. 计算机与现代化, 2020(9):122-126.
[2] BATRA N, SINGH A, WHITEHOUSE K. If you measure it, can you improve it? Exploring the value of energy disaggregation[C]// Proceedings of the 2nd ACM International Conference on Embedded Systems for Energy-Efficient Built Environments. 2015:191-200.
[3] 殷树刚,张宇,拜克明. 基于实时电价的智能用电系统[J]. 电网技术, 2009,33(19):11-16.〖HJ0.22mm〗
[4] HART G W. Nonintrusive appliance load monitoring[J]. Proceedings of the IEEE, 1992,80(12):1870-1891.
[5] 孙毅,崔灿,陆俊,等. 基于遗传优化的非侵入式家居负荷分解方法[J]. 电网技术, 2016,40(12):3912-3917.
[6] LIANG J, NG S K K, KENDALL G, et al. Load signature study, part I: Basic concept, structure, and methodology[J]. IEEE Transactions on Power Delivery, 2010,25(2):551-560.
[7] RUZZELLI A G, NICOLAS C, SCHOOFS A, et al. Real-time recognition and profiling of appliances through a single electricity sensor[C]// Proceedings of the 2010 7th Annual IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks. 2010:279-287.
[8] 汪颖,杨维,肖先勇,等. 基于U-I轨迹曲线精细化识别的非侵入式居民负荷监测方法[J]. 电网技术, 2021,45(10):4104-4113.
[9] 延菲,张瑞祥,孙耀杰,等. 基于改进kNN算法的非侵入式负荷识别方法[J]. 复旦学报(自然科学版), 2021,60(2):182-188.
[10]涂京,周明,宋旭帆,等. 基于监督学习的非侵入式负荷监测算法比较[J]. 电力自动化设备, 2018,38(12):128-134.
[11]高云,杨洪耕. 基于暂态特征贴近度匹配的家用负荷识别[J]. 电力系统自动化, 2013,37(9):54-59.
[12]李雨轩. 非侵入式负荷分解算法的综合研究[D]. 北京:北京交通大学, 2016.
[13]LIANG J, NG S K K, KENDALL G, et al. Load signature study, part II: Disaggregation framework, simulation, and applications[J]. IEEE Transactions on Power Delivery, 2010,25(2):561-569.
[14]TSAI M S, LIN Y H. Modern development of an adaptive non-intrusive appliance load monitoring system in electricity energy conservation[J]. Applied Energy, 2012,96:55-73.
[15]HONG Y Y, CHOU J H. Nonintrusive energy monitoring for microgrids using hybrid self-organizing feature-mapping networks[J]. Energies, 2012,5(7):2578-2593.
[16]MEEHAN P, MCARDLE C, DANIELS S. An efficient, scalable time-frequency method for tracking energy usage of domestic appliances using a two-step classification algorithm[J]. Energies, 2014,7(11):7041-7066.
[17]程祥,李林芝,吴浩,等. 非侵入式负荷监测与分解研究综述[J]. 电网技术, 2016,40(10):3108-3117.
[18]牟魁翌,杨洪耕. 基于PLA-GDTW支持向量机的非侵入式负荷监测方法[J]. 电网技术, 2019,43(11):4185-4193.
[19]林思沣,冯德旺,廖荣森,等. SVM在大功率负荷下对小功率负荷识别研究[J]. 福建电脑, 2021,37(3):69-70.
[20]ZHANG G Q, LI Y, DENG X P. K-Means clustering-based electrical equipment identification for smart building application[J]. Information, 2020,11(1). DOI: 10.3390/info11010027.
[21]李咏. 基于机器学习的建筑物联网用电设备识别方法研究[D]. 济南:山东建筑大学, 2020.
[22]周明,宋旭帆,涂京,等. 基于非侵入式负荷监测的居民用电行为分析[J]. 电网技术, 2018,42(10):3268-3274.
[23]张玉天,邓春宇,刘沅昆,等. 基于卷积神经网络的非侵入负荷辨识算法[J]. 电网技术, 2020,44(6):2038-2044.
[24]陈春玲,夏旻,王珂,等. 基于分组空洞残差网络的非侵入式负荷分解[J]. 计算机应用与软件, 2021,38(9):53-59.
[25]于超,覃智君,阳育德. 基于启停状态识别改进因子隐马尔可夫模型的非侵入式负荷分解[J]. 电网技术, 2021,45(11):4540-4550.
[26]MAKONIN S, POPOWICH F, BAJIC I V, et al. Exploiting HMM sparsity to perform online real-time nonintrusive load monitoring[J]. IEEE Transactions on Smart Grid, 2016,7(6):2575-2585.
[27]孙毅,崔灿,陆俊,等. 基于差量特征提取与模糊聚类的非侵入式负荷监测方法[J]. 电力系统自动化, 2017,41(4):86-91.
|