[1] FUJINAGA I. Optical music recognition using projections[D]. McGill University, Canada, 1988.
[2] 刘晓翔,张树生,王贺,等. 计算机光学乐谱识别技术[J]. 计算机工程, 2003,29(2):14-15.
[3] REBELO A, FUJINAGA I, PASZKIEWICZ F, et al. Optical music recognition: State-of-the-art and open issues[J]. International Journal of Multimedia Information Retrieval, 2012,1(3):173-190.
[4] CALVO-ZARAGOZA J, GALLEGO A J. A selectional auto-encoder approach for document image binarization[J]. Pattern Recognition, 2019,86:37-47.
[5] CALVO-ZARAGOZA J, PERTUSA A, ONCINA J. Staff-line detection and removal using a convolutional neural network[J]. Machine Vision and Applications, 2017,28(5-6):665-674.
[6] PACHA A, CHOI KY, COUASNON B, et al. Handwritten music object detection: Open issues and baseline results[C]// 2018 13th IAPR International Workshop on Document Analysis Systems (DAS). 2018:163-168.
[7] FORNS A, DUTTA A, GORDO A, et al. The ICDAR 2011 music scores competition: Staff removal and writer identification[C]// 2011 International Conference on Document Analysis and Recognition. 2011:1511-1515.
[8] 宋爽,陆鑫达. 基于BERT与图像自注意力机制的文本匹配模型[J]. 计算机与现代化, 2021(11):12-16.
[9] 张志刚,游安清. 基于CPN网络的车辆关键点检测[J]. 计算机与现代化, 2021(10):75-80.
[10]CALVO-ZARAGOZA J, HAJIC JR J, PACHAA. Understanding optical music recognition[J]. ACM Computing Surveys, 2020, 53(4): Article 77. DOI:10.1145/3397499.
[11]HAJIC JR.J, DORFER M, WIDMER G, et al. Towards full-pipeline handwritten OMR with musical symbol detection by U-nets[C]// Proceedings of the 19th International Society for Music Information Retrieval Conference. 2018:225-232.
[12]RONNEBERGER O, FISCHER P, BROX T. U-Net: Convolutional networks for biomedical image segmentation[C]// International Conference on Medical Image Computing and Computer-Assisted Intervention. 2015:234-241.
[13]TUGGENER L, ELEZI I, SCHMIDHUBER J, et al. Deep watershed detector for music object recognition[C]// Proceedings of the 19th International Society for Music Information Retrieval Conference. 2018:271-278.
[14]VAN DER WEL E, ULLRICH K. Optical music recognition with convolutional sequence-to-sequence models[C]// The 2017 International Society for Music Information Retrieval. 2017:731-737.
[15]CALVO-ZARAGOZA J, RIZO D. Camera-PrIMuS: Neural end-to-end optical music recognition on realistic monophonic scores[C]// Proceedings of the 19th International Society for Music Information Retrieval Conference. 2018:248-255.
[16]CALVO-ZARAGOZA J, RIZO D. End-to-end neural optical music recognition of monophonic scores[J]. Applied Sciences, 2018,8(4):606. DOI:10.3390/app8040606.
[17]SHI B G, BAI X, YAO C. An end-to-end trainable neural network for image-based sequence recognition and its application to scene text recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017,39(11):2298-2304.
[18]SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[J]. arXiv preprint arXiv:1409.1556, 2014.
[19]HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997,9(8):1735-1780.
[20]GRAVES A, FERNANDEZ S, GOMEZ F, et al. Connectionist temporal classification: Labelling unsegmented sequence data with recurrent neural networks[C]// Proceedings of the 23rd International Conference on Machine Learning. 2006:369-376.
[21]WANG J F, HU X L. Gated recurrent convolution neural network for OCR[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. 2017:334-343.
[22]HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. 2016:770-778.
[23]LIN M, CHEN Q, YAN S C. Network in network[J]. arXiv preprint arXiv:1312.4400, 2013.
[24]MNIH V, HEESS N, GRAVES A, et al. Recurrent models of visual attention[C]// Proceedings of the 27th International Conference on Neural Information Processing Systems. 2014:2204-2212.
[25]陈聪,贺杰,陈佳. 混合连接时间/注意力机制端到端语音识别[J]. 控制工程, 2021,28(3):585-591.
[26]陈瑛,陈平平,林志坚. 基于层次自注意力的高效场景文本识别[J]. 无线电工程, 2022,52(1):70-75.
[27]CHOROWSKI J, BAHDANAU D, SERDYUK D, et al. Attention-based models for speech recognition[C]// Proceedings of the 28th International Conference on Neural Information Processing Systems. 2015:577-585.
[28]ALFARO-CONTRERAS M, CALVO-ZARAGOZA J, IESTA J M. Approaching end-to-end optical music recognition for homophonic scores[C]// Iberian Conference on Pattern Recognition and Image Analysis. 2019:147-158.
[29]BAR A, RIBA P, CALVO-ZARAGOZA J, et al. From optical music recognition to handwritten music recognition:A baseline[J]. Pattern Recognition Letters, 2019,123:1-8.
[30]XU Y, XU Y H, QIAN Q, et al. Towards understanding label smoothing[J]. arXiv preprint arXiv:2006.11653, 2020.
[31]吴琼,李锵,关欣. 基于多尺度残差式卷积神经网络与双向简单循环单元的光学乐谱识别方法[J]. 激光与光电子学进展, 2020,57(8):59-68.
[32]Verovio Website. Verovio | Music Notation Engraving Library for MEI with MusicXML and Humdrum Support and Various Toolkits[EB/OL]. [2021-12-21]. https://www.verovio.org/index.xhtml.
|