[1] 科技疯汇. CNNIC发布第49次《中国互联网络发展状况统计报告》[EB/OL]. (2022-02-25)[2022-04-14]. http://k.sina.com.cn/article_2194868354_82d30882040014pxw.html?sudaref=www.baidu.com&display=0&retcode=0.
[2] 王曰芬,王一山,杨洁. 基于社区发现和关键节点识别的网络舆情主题发现与实证分析[J]. 图书与情报, 2020(5):48-58.
[3] 段鹏. 5G时代互联网主流意识形态传播经验与内涵重释[J]. 现代出版, 2020(6):5-9.
[4] 刘小玲,谭宗颖. 新兴技术主题识别方法研究进展[J]. 图书情报工作, 2020,64(11):145-152.
[5] HAYES J H, PAYNE J, ESSEX E, et al. Towards improved network security requirements and policy: Domain-specific completeness analysis via topic modeling[C]// 2020 IEEE 7th International Workshop on Artificial Intelligence for Requirements Engineering(AIRE). 2020:83-86.
[6] 游丹丹,陈福集. 我国网络舆情热点话题发现研究综述[J]. 现代情报, 2017,37(3):165-171.
[7] 许海云,董坤,刘春江,等. 文本主题识别关键技术研究综述[J]. 情报科学, 2017,35(1):153-160.
[8] 吴江,王凯利,董克,等. 信息计量领域网络分析方法应用研究综述[J]. 情报学报, 2021,40(10):1118-1128.
[9] 吴锦池,余维杰. 融合知识库语义的文本聚类研究[J]. 情报杂志, 2021,40(5):156-164.
[10]郭红梅,张智雄. 基于图挖掘的文本主题识别方法研究综述[J]. 中国图书馆学报, 2015,41(6):97-108.
[11]XU G X, MENG Y T, CHEN Z, et al. Research on topic detection and tracking for online news texts[J]. IEEE Access, 2019,7:58407-58418.
[12]BLEI D M, NG A Y, JORDAN M I. Latent Dirichlet allocation[J]. Journal of Machine Learning Research, 2003,3:993-1022.
[13]KOLTCOV S, IGNATENKO V. Renormalization analysis of topic models[J]. Entropy, 2020,22(5):23. DOI: 10.3390/e22050556.
[14]NEWMAN D, KARIMI S, CAVEDON L. External evaluation of topic models[C]// Proceedings of the 14th Australasian Document Computing Symposium. 2009:11-18.
[15]XU G X, X WU, YAO H S, et al. Research on topic recognition of network sensitive information based on SW-LDA model[J]. IEEE Access, 2019,7:21527-21538.
[16]居亚亚,杨璐,严建峰. 基于动态权重的LDA算法[J]. 计算机科学, 2019,46(8):260-265.
[17]谭旭,庄穆妮,毛太田,等. 基于LDA-ARMA混合模型的大规模网络舆情情感演化分析[J]. 情报杂志, 2020,39(10):121-129.
[18]YANG Y M, LIU H M, GUAN Z Y, et al. CoHomo: A cluster-attribute correlation aware graph clustering framework[J]. Neurocomputing, 2020,412:327-338.
[19]CINQUE M, CORTE R D, MOSCATO V, et al. A graph-based approach to detect unexplained sequences in a log[J]. Expert Systems with Applications, 2021,171:114556.
[20]陈磊,王丹丹,王青,等. 基于图挖掘扩展学习的增强需求跟踪恢复方法[J]. 计算机研究与发展, 2021,58(4):777-793.
[21]ROUSSEAU F, VAZIRGIANNIS M. Graph-of-word and TW-IDF: New approach to Ad Hoc IR[C]// Proceedings of the 22nd ACM International Conference on Information & Knowledge Management. 2013:59-68.
[22]WON J S, KIM K H, SOHNG K Y, et al. Trends in nursing research on infections: Semantic network analysis and topic modeling[J]. International Journal of Environmental Research and Public Health, 2021,18(13):6915-6915.
[23]刘海涛. 汉语语义网络的统计特性[J]. 科学通报, 2009,54(14):2060-2064.
[24]LI X M, ZHANG A, LI C C, et al. Exploring coherent topics by topic modeling with term weighting[J]. Information Processing and Management, 2018,54(6):1345-1358.
[25]毛存礼,梁昊远,余正涛,等. 基于神经自回归分布估计的涉案新闻主题模型构建方法[J]. 中文信息学报, 2021,35(2):89-98.
[26]WU X N, ZENG J, YAN J F, et al. Finding better topics: Features, priors and constraints[C]// 2014 Pacific-Asia Conference on Knowledge Discovery and Data Mining. 2014:296-310.
[27]ZHANG J W, ZENG J, YUAN M X, et al. LDA revisited: Entropy, prior and convergence[C]// Proceedings of the 25th ACM International on Conference on Information and Knowledge Management. 2016:1763-1772.
[28]张孝飞,陈航行,张春花. 基于语义概念和词共现的微博主题词提取研究[J]. 情报科学, 2021,39(1):142-147.
|