[1] CHU F, WANG J C, ZHAO X, et al. Transfer learning for nonlinear batch process operation optimization[J].Journal of Process Control, 2021,101:11-23.
[2] ZHOU L M, JIA L, WANG Y L, et al. An integrated robust iterative learning control strategy for batch processes based on 2D system[J]. Journal of Process Control, 2020,85:136-148.
[3] 李征,王普,高学金,等. 基于信息增量矩阵的多阶段间歇过程质量预测[J]. 化工学报, 2018,69(12):5164-5172.
[4] 赵小强,牟淼. 基于变量分块的KDLV-DWSVDD间歇过程故障检测算法研究[J]. 仪器仪表学报, 2021,42(2):244-256.
[5] REN J Y, NI D. A batch-wise LSTM-encoder decoder network for batch process monitoring[J]. Chemical Engineering Research and Design, 2020,164:102-112.
[6] PENG C, LU R W, KANG O, et al. Batch process fault detection for multi-stage broad learning system[J]. Neural Networks, 2020,129:298-312.
[7] ZHU J L, WANG Y Q, ZHOU D H, et al. Batch process modeling and monitoring with local outlier factor[J]. IEEE Transactions on Control Systems Technology, 2019,27(4):1552-1565.
[8] 赵春晖,余万科,高福荣. 非平稳间歇过程数据解析与状态监控——回顾与展望[J]. 自动化学报, 2020,46(10):2072-2091.
[9] NOMIKOS P, MACGREGOR J F. Monitoring batch processes using multiway principal component analysis[J]. AIChE Journal, 1994,40(8):1361-1375.
[10]NOMIKOS P, MACGREGOR J F. Multi-way partial least squares in monitoring batch processes[J]. Chemometrics and Intelligent Laboratory Systems, 1995,30(1):97-108.
[11]LU N Y, GAO F R, WANG F L. Sub-PCA modeling and on-line monitoring strategy for batch processes[J]. AIChE Journal, 2004,50(1):255-259.
[12]LU N Y, GAO F R. Stage-based process analysis and quality prediction for batch processes[J]. Industrial & Engineering Chemistry Research, 2005,44(10):3547-3555.
[13]于涛,李和平,王建林,等. 基于滑动时间窗口加权MPCA的间歇过程监测方法[J]. 北京化工大学学报(自然科学版), 2015,42(4):112-119.
[14]高学金,杨彦霞,王普,等. 基于扩展核熵负载矩阵的发酵过程故障监测[J]. 控制理论与应用, 2018,35(6):813-821.
[15]周祎,张二亮. 低阻尼多变量系统频率响应函数的非参数辨识方法[J]. 振动与冲击, 2020,39(19):182-186.
[16]ZENZEN R, BELAIDI I, KHATIR S, et al. A damage identification technique for beam-like and truss structures based on FRF and Bat Algorithm[J]. Comptes Rendus Mécanique, 2018,346(12):1253-1266.
[17]单卫东,臧朝平,张根辈,等. 基于频响函数识别直升机尾传动轴系非线性的方法[J]. 振动与冲击, 2020,39(14):102-108.
[18]李志农,李云龙,刁海洋. 基于非线性输出频率响应函数的转子不对中-碰摩耦合故障诊断方法研究[J]. 机械工程学报, 2019,55(19):84-91.
[19]LIN R M, NG T Y. Applications of higher-order frequency response functions to the detection and damage assessment of general structural systems with breathing cracks[J]. International Journal of Mechanical Sciences, 2018,148:652-666.
[20]王海玉,王映龙,闵建亮,等. 基于小波变换与多项指标的疲劳驾驶检测应用[J]. 计算机与现代化, 2018(10):32-35.
[21]梁京章,黄星舒,吴丽娟,等. 基于KPCA和改进K-means的电力负荷曲线聚类方法[J]. 华南理工大学学报(自然科学版), 2020,48(6):143-150.
[22]王玲,朱慧. 基于KPCA和G-G聚类的多元时间序列模糊分段[J]. 控制与决策, 2021,36(1):115-124.
[23]DING H W, WAN L. Research on intrusion detection based on KPCA-BP neural network[C]// 2018 IEEE 18th International Conference on Communication Technology. 2018:911-915.
|