[1] 于海跃,王晓飞. 工厂仪表数码管数字的识别[J]. 电子世界, 2019(8):140-142.
[2] 李元媛. 基于数码管识别的产品界面识别系统 [D]. 杭州:杭州电子科技大学, 2018.
[3] 陈家翔,龙建忠,陶青川,等. 数字仪表显示值的快速识别方法[J]. 中国测试技术, 2006(6):49-51.
[4] 黄健,张钢. 深度卷积神经网络的目标检测算法综述[J]. 计算机工程与应用, 2020,56(17):12-23.
[5] 赵永强,饶元,董世鹏,等. 深度学习目标检测方法综述[J]. 中国图象图形学报, 2020,25(4):629-654.
[6] GIRSHICK R. Fast R-CNN[C]// Proceedings of the 2015 IEEE International Conference on Computer Vision. 2015:1440-1448.
[7] REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017,39(6):1137-1149.
[8] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: Unified, real-time object detection[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. 2016:779-788.
[9] REDMON J, FARHADI A. YOLO9000: Better, faster, stronger[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. 2017:6517-6525.
[10]REDMON J, FARHADI A. YOLOv3: An incremental improvement[J]. arXiv preprint arXiv:1804.02767, 2018.
[11]BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLOv4: Optimal speed and accuracy of object detection[J]. arXiv preprint arXiv:2004.10934, 2020.
[12]THAKAR V, SAINI H, AHMED W, et al. Efficient single-shot multibox detector for construction site monitoring[C]// Proceedings of the 4th IEEE International Smart Cities Conference(ISC2). 2018.DOI:10.1109/ISCZ.2018.8656929.
[13]娄英欣. 基于深度学习的目标检测[D]. 北京:北京邮电大学, 2018.
[14]徐发兵,吴怀宇,陈志环,等. 基于深度学习的指针式仪表检测与识别研究[J]. 高技术通讯, 2019,29(12):1206-1215.
[15]王明凯. 基于计算机视觉的汽车仪表检测方法的研究[D]. 哈尔滨:哈尔滨工业大学, 2019.
[16]白士磊,殷柯欣,朱建启. 轻量级YOLOv3的交通标志检测算法[J]. 计算机与现代化, 2020(9):83-88.
[17]GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]// Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. 2014:580-587.
[18]HUANG G, LIU Z, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2017:2261-2269.
[19]CHOLLET F. Xception: Deep learning with depthwise separable convolutions[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2017:1800-1807.
[20]HUANG Y Q, ZHENG J C, SUN S D, et al. Optimized YOLOv3 algorithm and its application in traffic flow detections[J]. Applied Sciences, 2020,10(9). DOI:10.3390/app 10093079.
[21]REZATOFIGHI H, TSOI N, GWAK J Y, et al. Generalized intersection over union: A metric and a loss for bounding box regression[C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019:658-666.
[22]ZHENG Z H, WANG P, LIU W, et al. Distance-IoU loss: Faster and better learning for bounding box regression[C]// Proceedings of the AAAI Conference on Artificial Intelligence. 2020,34(7):12993-13000.
[23]WAN J X, DING W, ZHU H L, et al. An efficient small traffic sign detection method based on YOLOv3[J]. Journal of Signal Processing Systems, 2021,93(8):899-911.
[24]RUSSAKOVSKY O, DENG J, SU H, et al. ImageNet large scale visual recognition challenge[J]. International Journal of Computer Vision, 2015,115(3):211-252.
|