[1] JALALI S, YUAN X. Snapshot compressed sensing: Performance bounds and algorithms[J]. IEEE Transactions on Information Theory, 2019,65(12):8005-8024.
[2] DONOHO D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006,52(4):1289-1306.
[3] 戴琼海,付长军,季向阳. 压缩感知研究[J]. 计算机学报, 2011,34(3):425-434.
[4] 邵文泽,韦志辉. 压缩感知基本理论:回顾与展望[J]. 中国图象图形学报, 2012,17(1):1-12.
[5] SUN Y B, CHEN J W, LIU Q S, et al. Dual-path attention network for compressed sensing image reconstruction[J]. IEEE Transactions on Image Processing, 2020,29:9482-9495.
[6] HITOMI Y, GU J W, GUPTA M, et al. Video from a single coded exposure photograph using a learned over-complete dictionary[C]// 2011 International Conference on Computer Vision. IEEE, 2011:287-294.
[7] REDDY D, VEERARAGHAVAN A, CHELLAPPA R. P2C2: Programmable pixel compressive camera for high speed imaging[C]// CVPR’11. 2011:329-336.
[8] LLULL P, LIAO X J, YUAN X, et al. Coded aperture compressive temporal imaging[J]. Optics Express, 2013,21(9):10526-10545.
[9] YUAN X, LLULL P, LIAO X J, et al. Low-cost compressive sensing for color video and depth[C]// Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. 2014:3318-3325.
[10]SUN Y Y, YUAN X, PANG S. High-speed compressive range imaging based on active illumination[J]. Optics Express, 2016,24(20):22836-22846.
[11]YUAN X. Generalized alternating projection based total variation minimization for compressive sensing[C]// 2016 IEEE International Conference on Image Processing (ICIP). 2016:2539-2543.
[12]YANG J B, YUAN X, LIAO X J, et al. Video compressive sensing using Gaussian mixture models[J]. IEEE Transactions on Image Processing, 2014,23(11):4863-4878.
[13]YANG J B, LIAO X J, YUAN X, et al. Compressive sensing by learning a Gaussian mixture model from measurements[J]. IEEE Transactions on Image Processing, 2014,24(1):106-119.
[14]GOODFELLOW I, BENGIO Y, COURVILLE A, et al. Deep Learning[M]. Cambridge: MIT press, 2016.
[15]ILIADIS M, SPINOULAS L, KATSAGGELOS A K. Deep fully-connected networks for video compressive sensing[J]. Digital Signal Processing, 2018,72:9-18.
[16]JI S W, XU W, YANG M, et al. 3D convolutional neural networks for human action recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013,35(1):221-231.
[17]ALBAWI S, MOHAMMED T A, AL-ZAWI S. Understanding of a convolutional neural network[C]// 2017 International Conference on Engineering and Technology(ICET). 2017.DOI:10.1109/ICEngTechnol.2017.8308186.
[18]HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. 2016:770-778.
[19]QIU Z F, YAO T, MEI T. Learning spatio-temporal representation with pseudo-3d residual networks[C]// Proceedings of the 2017 IEEE International Conference on Computer Vision. 2017:5534-5542.
[20]YUAN X. Various total variation for snapshot video compressive imaging[J]. arXiv preprint arXiv:2005.08028, 2020.
[21]IEK , ABDULKADIR A, LIENKAMP S S, et al. 3D U-Net: Learning dense volumetric segmentation from sparse annotation[C]// 2016 International Conference on Medical Image Computing and Computer-Assisted Intervention. 2016:424-432.
[22]YUAN X, LIU Y, SUO J L, et al. Plug-and-play algorithms for large-scale snapshot compressive imaging[C]// Proceedings of the 2020 IEEE Conference on Computer Vision and Pattern Recognition. 2020:1444-1454.
[23]KAY W, CARREIRA J, SIMONYAN K, et al. The kinetics human action video dataset[J]. arXiv preprint arXiv:1705.06950, 2017.
[24]LIU Y, YUAN X, SUO J L, et al. Rank minimization for snapshot compressive imaging[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019,41(12):2990-3006.
[25]BADRINARAYANAN V, KENDALL A, CIPOLLA R. SegNet: A deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017,39(12):2481-2495.
|