[1] MACQUEEN J. Some methods for classification and analysis of multivariate observations[C]// Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability. 1967:281-297.
[2] CHEN X Q, PENG H, HU J S. K-medoids substitution clustering method and a new clustering validity index method[C]// Proceedings of the 6th World Congress on Intelligent Control and Automation. 2006:5896-5900.
[3] GALAN S F. Comparative evaluation of region query strategies for DBSCAN clustering[J]. Information Sciences, 2019,502:76-90.
[4] 郑志娴,吴为民,李慧敏. 基于CURE聚类优化的数据挖掘算法研究 [J]. 哈尔滨商业大学学报(自然科学版), 2017,33(6):723-727.
[5] 杨洁,王国胤,王飞. 基于密度峰值的网格聚类算法[J]. 计算机应用, 2017,37(11):3080-3084.
[6] DUNN J C. A fuzzy relative of the isodata process and its use in detecting compact well-separated clusters[J]. Journal of Cybernetics, 1973,3(3):32-57.
[7] BEZDEK J C. Pattern Recognition with Fuzzy Objective Function Algorithms[M]. Springer, 1981.
[8] 王国伟,闫丽,姚玉霞.基于熵权法加权的模糊C均值聚类算法研究 [J]. 农业网络信息, 2010(8):148-150.
[9] HATHAWAY R J , HU Y K. Density-weighted fuzzy C-means clustering[J]. IEEE Transactions on Fuzzy Systems, 2009,17(1):243-252.
[10]王丽娟,关守义,王晓龙,等. 基于属性权重的Fuzzy C Mean算法[J]. 计算机学报, 2006(10):1797-1803.
[11]林甲祥,吴丽萍,巫建伟,等. 基于样本与特征双加权的自适应FCM聚类算法[J]. 黑龙江大学自然科学学报, 2018,35(2):244-252.
[12]周世波,徐维祥,徐良坤. 融合密度峰值和空间邻域信息的FCM聚类算法[J]. 仪器仪表学报, 2019,40(4):137-144.
[13]WU Z H, WU Z C, ZHANG J. An improved FCM algorithm with adaptive weights based on SA-PSO[J]. Neural Computing and Applications, 2017,28(10):3113-3118.
[14]钱雪忠,姚琳燕. 面向稀疏高维大数据的扩展增量模糊聚类算法[J]. 计算机工程, 2019,45(6):75-81.
[15]肖满生,肖哲,文志诚,等. 一种空间相关性与隶属度平滑的FCM改进算法[J]. 电子与信息学报, 2017,39(5):1123-1129.
[16]吴鹏. 基于点密度与邻域信息的模糊C均值算法[J]. 软件导刊, 2018,17(4):85-88.
[17]ZARINBAL M, ZARANDI M H F, TURKSEN I B. Relative entropy fuzzy C-means clustering[J]. Information Sciences, 2014,260:74-97.
[18]高云龙,王志豪,潘金艳,等.基于自适应松弛的鲁棒模糊C均值聚类算法[J]. 电子与信息学报, 2020,42(7):1774-1781.
[19]肖满生,张居武. 一种基于子集测度的FCM聚类加权指数计算方法[J]. 模糊系统与数学, 2013,27(2):136-141.
[20]肖满生,肖哲,文志强,等. 模糊C均值聚类区间型模糊化参数模型[J]. 系统工程与电子技术, 2015,37(4):868-873.
[21]陈小辉,张功萱. 基于信息熵的符号属性精确赋权聚类方法[J]. 重庆邮电大学学报(自然科学版), 2014,26(6):850-855.
[22]原福永,张晓彩,罗思标. 基于信息熵的精确属性赋权K-means聚类算法[J]. 计算机应用, 2011,31(6):1675-1677.
[23]VINH N X, EPPS J, BAILEY J. Information theoretic measures for clusterings comparison: Variants, properties, normalization and correction for chance[J]. Journal of Machine Learning Research, 2010,11:2837-2854.
|