[1] 冯国臣. 基于智慧道路的车路协同应用研究[C]// 第十五届中国智能交通年会科技论文集(2). 中国智能交通协会, 2020:652-661.
[2] LIANG M, YANG B, WANG S L, et al. Deep continuous fusion for multi-sensor 3D object detection[C]// Proceedings of the 2018 European Conference on Computer Vision (ECCV). 2018:663-678.
[3] CHEN X Z, KUNDU K, ZHANG Z Y, et al. Monocular 3D object detection for autonomous driving[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. 2016:2147-2156.
[4] TRAN D, BOURDEV L, FERGUS R, et al. Learning spatiotemporal features with 3D convolutional networks[C]// Proceedings of the 2015 IEEE International Conference on Computer Vision. 2015:4489-4497.
[5] LEPETIT V, MORENO-NOGUER F, FUA P. EPnP: An accurate O(n) solution to the PnP problem[J]. International Journal of Computer Vision, 2009,81(2):155-166.
[6] BHARDWAJ R, TUMMALA G K, RAMALINGAM G, et al. Autocalib: Automatic traffic camera calibration at scale[C]// Proceedings of the 4th ACM International Conference on Systems for Energy-Efficient Built Environments. 2017. DOI: 10.1145/3137133.3137149.
[7] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017,60(6):84-90.
[8] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[J]. arXiv preprint arXiv:1409.1556, 2014.
[9] SZEGEDY C, LIU W, JIA Y Q, et al. Going deeper with convolutions[C]// Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. 2015:1-9.
[10]HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. 2016:770-778.
[11]FENG Z H, KITTLER J, AWAIS M, et al. Wing loss for robust facial landmark localisation with convolutional neural networks[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2018:2235-2245.
[12]FUHL W, KUBLER T, LOTZ R A, et al. Validation loss for landmark detection[J]. arXiv preprint arXiv:1901.10143, 2019.
[13]NEWELL A, YANG K Y, DENG J. Stacked hourglass networks for human pose estimation[C]// Proceedings of the 2016 European Conference on Computer Vision (ECCV). 2016:483-499.
[14]CAO Z, HIDALGO G, SIMON T, et al. OpenPose: Realtime multi-person 2D pose estimation using part affinity fields[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021,43(1):172-186.
[15]CHEN Y L, WANG Z C, PENG Y X, et al. Cascaded pyramid network for multi-person pose estimation[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2018:7103-7112.
[16]LI W B, WANG Z C, YIN B Y, et al. Rethinking on multi-stage networks for human pose estimation[J]. arXiv preprint arXiv:1901.00148, 2019.
[17]RONNEBERGER O, FISCHER P, BROX T. U-Net: Convolutional networks for biomedical image segmentation[C]// Proceedings of the 2015 International Conference on Medical Image Computing and Computer-Assisted Intervention. 2015:234-241.
[18]HUANG J J, ZHU Z, GUO F, et al. The devil is in the details: Delving into unbiased data processing for human pose estimation[C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2020:5699-5708.
[19]ZHANG F, ZHU X T, DAI H B, et al. Distribution-aware coordinate representation for human pose estimation[C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2020:7091-7100.
[20]REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017,39(6):1137-1149.
[21]LIN T Y, DOLLAR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. 2017:936-944.
[22]NIBALI A, HE Z, MORGAN S, et al. Numerical coordinate regression with convolutional neural networks[J]. arXiv preprint arXiv:1801.07372, 2018.
[23]SONG X B, WANG P, ZHOU D F, et al. ApolloCar3D: A large 3D car instance understanding benchmark for autonomous driving[C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2019:5447-5457.
[24]GOYAL P, DOLLAR P, GIRSHICK R, et al. Accurate, large minibatch SGD: Training imageNet in 1 hour[J]. arXiv preprint arXiv:1706.02677, 2017.
[25]SUN K, XIAO B, LIU D, et al. Deep high-resolution representation learning for human pose estimation[C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2019:5686-5696.
[26]YU C Q, WANG J B, PENG C, et al. BiSeNet: Bilateral segmentation network for real-time semantic segmentation[C]// Proceedings of the 2018 European Conference on Computer Vision (ECCV). 2018:334-349.
|