[1] 周飞燕,金林鹏,董军. 卷积神经网络研究综述[J]. 计算机学报, 2017,40(6):1229-1251.
[2] 吴正文. 卷积神经网络在图像分类中的应用研究[D]. 成都:电子科技大学, 2015.
[3] 李彦冬,郝宗波,雷航. 卷积神经网络研究综述[J]. 计算机应用, 2016,36(9):2508-2515.
[4] 李旭冬,叶茂,李涛. 基于卷积神经网络的目标检测研究综述[J]. 计算机应用研究, 2017,34(10):2881-2886.
[5] GIRSHICK R. Fast R-CNN[C]// Proceedings of the 2015 IEEE International Conference on Computer Vision. 2015:1440-1448.
[6] 杨真真,匡楠,范露,等. 基于卷积神经网络的图像分类算法综述[J]. 信号处理, 2018,34(12):1474-1489.
[7] SZEGEDY C, LIU W, JIA Y Q, et al. Going deeper with convolutions[C]// Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. 2015:1-9.
[8] 李青华,李翠平,张静,等. 深度神经网络压缩综述[J]. 计算机科学, 2019,46(9):1-14.
[9] 李思奇. 卷积神经网络算法模型的压缩与加速算法比较[J]. 信息与电脑, 2019(11):21-23.
[10]谢斌红,钟日新,潘理虎,等. 结合剪枝与流合并的卷积神经网络加速压缩方法[J]. 计算机应用, 2020,40(3):621-625.
[11]孙彦丽,叶炯耀. 基于剪枝与量化的卷积神经网络压缩方法[J]. 计算机科学, 2020,47(8):261-266.
[12]李浩,赵文杰,韩波. 基于滤波器裁剪的卷积神经网络加速算法[J]. 浙江大学学报(工学版), 2019,53(10):1994-2002.
[13]吴军,邱阳,卢忠亮. 基于改进的SqueezeNet的人脸识别[J]. 科学技术与工程, 2019,19(11):218-223.
[14]王继霄,李阳,王家宝,等. 基于SqueezeNet的轻量级图像融合方法[J]. 计算机应用, 2020,40(3):837-841.
[15]ROMERA E, ALVAREZ J M, BERGASA L M, et al. ERFNet: Efficient residual factorized convNet for real-time semantic segmentation[J]. IEEE Transactions on Intelligent Transportation Systems, 2018,19(1):263-272.
[16]ZHANG X Y, ZHOU X Y, LIN M X, et al. ShuffleNet: An extremely efficient convolutional neural network for mobile devices[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2018:6848-6856.
[17]JIN X J, YUAN X T, FENG J S, et al. Training skinny deep neural networks with iterative hard thresholding methods[J]. arXiv preprint arXiv:1607.05423, 2016.
[18]LEBEDEV V, LEMPITSKY V. Fast convNets using group-wise brain damage[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. 2016:2554-2564
[19]WEN W, WU C P, WANG Y D, et al. Learning structured sparsity in deep neural networks[C]// Proceedings of the 2016 30th Annual Conference on Neural Information Processing Systems. 2016:2082-2090.
[20]HAN S, POOL J, TRAN J, et al. Learning both weights and connections for efficient neural network[C]// Proceedings of the 28th International Conference on Neural Information Processing Systems. 2015:1135-1143.
[21]SUN Y, WANG X G, TANG X O. Sparsifying neural network connections for face recognition[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. 2016:4856-4864.
[22]YANG T J, CHEN Y H, SZE V. Designing energy-efficient convolutional neural networks using energy-aware pruning[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. 2017:6071-6079.
[23]ABADI M, AGARWAL A, BARHAM P, et al. TensorFlow: Large-scale machine learning on heterogeneous distributed systems[J]. arXiv preprint arXiv:1603.04467, 2016.
[24]KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017,60(6):84-90.
|