[1] 王青,伍书剑,李明树. 软件缺陷预测技术[J]. 软件学报, 2008,19(7):1565-1580. 〖HJ1.55mm〗
[2] HALL T, BEECHAM S, BOWES D, et al. A systematic literature review on fault prediction performance in software engineering[J]. IEEE Transactions on Software Engineering, 2012,38(6):1276-1304.
[3] 薛参观,燕雪峰. 基于改进深度森林算法的软件缺陷预测[J]. 计算机科学, 2018,45(8):160-165.
[4] 陈翔,顾庆,刘望舒,等. 静态软件缺陷预测方法研究[J]. 软件学报, 2016,27(1):1-25.
[5] 杨杰,燕雪峰,张德平. 基于Boosting的代价敏感软件缺陷预测方法[J]. 计算机科学, 2017,44(8):176-180.
[6] 傅艺绮,董威,尹良泽,等. 基于组合机器学习算法的软件缺陷预测模型[J]. 计算机研究与发展, 2017,54(3):633-641.
[7] WANG J, SHEN B J, CHEN Y T. Compressed C4.5 models for software defect prediction[C]// Proceedings of the 2012 12th International Conference on Quality Software. 2012:13-16.
[8] SHAN C, CHEN B Y, HU C Z, et al. Software defect prediction model based on LLE and SVM[C]// Proceedings of the 2014 Communications Security Conference (CSC 2014).2014:1-5.
[9] WEI H, SHAN C, HU C Z, et al. Software defect distribution prediction model based on NPE-SVM[J]. Chinese Communications, 2018,15(5):173-182.
[10]TAN S B. An effective refinement strategy for KNN text classifier[J]. Expert Systems with Applications, 2006,30(2):290-298.
[11]BADER-EL-DEN M, TEITEI E, PERRY T. Biased random forest for dealing with the class imbalance problem[J]. IEEE Transactions on Neural Networks and Learning Systems, 2019,30(7):2163-2172.
[12]蒋盛益,谢照青,余雯. 基于代价敏感的朴素贝叶斯不平衡数据分类研究[J]. 计算机研究与发展, 2011,48(S1):387-390.
[13]赖永凯,陈向宇,刘海. 基于贝叶斯Logistic回归的软件缺陷预测研究[J]. 计算机工程与应用, 2019,55(11):204-208.
[14]HAN H, WANG W Y, MAO B H. Borderline-SMOTE: A new over-sampling method in imbalanced data sets learning[C]// Proceedings of the 2005 International Conference on Advances in Intelligent Computing. 2005:878-887.
[15]TOMEK I. Two modifications of CNN[J]. IEEE Transactionson Systems, Man, and Cybernetics, 1976,6(11):769-772.
[16]BATISTA G E, PRATI R C, MONARD M C. A study of the behavior of several methods for balancing machine learning training data[J]. ACM SIGKDD Explorations Newsletter, 2004,6(1):20-29.
[17]邱少健,蔡子仪,陆璐. 基于卷积神经网络的代价敏感软件缺陷预测模型[J]. 计算机科学, 2019,46(11):156-160.
[18] LI F L, ZHANG X Y, ZHANG X Q, et al. Cost-sensitive and hybrid-attribute measure multi-decision tree over imbalanced data sets[J]. Information Sciences, 2018,422:242-256.
[19]DECHERCHI S, ROCCHIA W. Import vector domain description: A kernel logistic one-class learning algorithm[J]. IEEE Transactions on Neural Networks & Learning Systems, 2017,28(7):1722-1729.
[20]ROKACH L. Ensemble-based classifiers[J]. Artificial Intelligence Review, 2010,33(1-2):1-39.
[21]GALAR M, FERNANDEZ A, BARRENECHEA E, et al. A review on ensembles for the class imbalance problem: Bagging-, boosting-, and hybrid-based approaches[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part C, 2012,42(4):463-484.
[22]CHAWLA N V, BOWYER K W, HaLL L O, et al. SMOTE: Synthetic minority over-sampling technique[J]. Journal of Artificial Intelligence Research, 2002,16(1):321-357.
[23]PAK C, WANG T T, SU X H. An empirical study on software defect prediction using over-sampling by SMOTE[J]. International Journal of Software Engineering and Knowledge Engineering, 2018,28(6):811-830.
[24]WOLPERT D H. Stacked generalization[J]. Neural Networks, 1992,5(2):241-259.
|