[1] IRVENE C, FORMBY D, LITCHFIELD S, et al. HoneyBot: A honeypot for robotic systems[J]. Proceedings of the IEEE, 2018,106(1):61-70.
[2] SHI L Y, CUI Y W, HAN X, et al. Mimicry honeypot: An evolutionary decoy system[J]. International Journal of High Performance Computing and Networking, 2019,14(2):157-164.
[3] GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]// Proceedings of the 27th International Conference on Neural Information Processing Systems. 2014:2672-2680.
[4] SPITZNER L. Dynamic honeypots[EB/OL]. (2003-09-15)[2020-10-22]. http://www.securityfocus.com/infocus/1731.
[5] NAIK N, SHANG C J, SHEN Q, et al. Intelligent dynamic honeypot enabled by dynamic fuzzy rule interpolation[C]// 2018 IEEE 20th International Conference on High Performance Computing and Communications; IEEE 16th International Conference on Smart City; IEEE 4th International Conference on Data Science and Systems (HPCC/SmartCity/DSS). 2018:1520-1527.
[6] PARK B, DANG S P, NOH S,et al. Dynamic virtual network honeypot[C]// Proceedings of the 2019 International Conference on Information and Communication Technology Convergence (ICTC). 2019:375-377.
[7] SHI L Y, LI Y, LIU T X, et al. Dynamic distributed honeypot based on blockchain[J]. IEEE Access, 2019,7:72234-72246.
[8] LI Y, SHI L Y, FENG H J. A game-theoretic analysis for distributed honeypots[J]. Future Internet, 2019,11(3):65.
[9] PAUNA A, IACOB A C, BICA I. QRASSH: A self-adaptive SSH honeypot driven by Q-learning[C]// Proceedings of the 2018 International Conference on Communications (COMM). 2018:441-446.
[10]石乐义,姜蓝蓝,刘昕,等. 拟态式蜜罐诱骗特性的博弈理论分析[J]. 电子与信息学报, 2013(5):1063-1068.
[11]石乐义,李阳,马猛飞. 蜜罐技术研究新进展[J]. 电子与信息学报, 2019,41(2):498-508.
[12]贾召鹏,方滨兴,崔翔,等. ArkHoney:基于协同机制的Web蜜罐[J]. 计算机学报, 2018 (2):413-425.
[13]杨天识,刁培金,梁露露,等. 基于OpenFlow的蜜罐主动取证技术[J]. 北京理工大学学报(自然科学版), 2019,39(5):545-550.
[14]KUMAR S, JAIN S, SHARMA H. Genetic algorithms[C]// Advances in Swarm Intelligence for Optimizing Problems in Computer Science. 2018:27-52.
[15]宫婧,孙知信,徐虹霞. 基于遗传算法的蜜罐系统[J]. 南京邮电大学学报(自然科学版), 2008,28(6):50-55.
[16]YANG Y, MI J. Design and implementation of distributed intrusion detection system based on honeypot[C]// Proceedings of the 2010 2nd International Conference on Computer Engineering and Technology. 2010:260-263.
[17]刘德莉. 基于遗传算法的拟态蜜罐系统研究[D]. 青岛:中国石油大学(华东), 2014..
[18]ISLAM J, ZHANG Y Q. GAN-based synthetic brain PET image generation[J]. Brain Informatics, 2020. DOI:10.1186/s40708-020-00104-2.
[19]ASAKURA T, AKAMA S, SHIMOKAWARA E, et al. Emotional speech generator by using generative adversarial networks[C]// Proceedings of the 10th International Symposium on Information and Communication Technology. 2019:9-14.
[20]HU W W, TAN Y. Generating adversarial malware examples for black-box attacks based on GAN[J]. arXiv preprint arXiv:1702.05983, 2017.
[21]HITAJ B, GASTI P, ATENIESE G, et al. PassGAN: A deep learning approach for password guessing[C]// Proceedings of the International Conference on Applied Cryptography and Network Security. 2019:217-237.
[22]袁辰,钱丽萍,张慧,等. 基于生成对抗网络的恶意域名训练数据生成[J]. 计算机应用研究, 2019,36(5). DOI: 10.19734/j.issn.1001-3695.2017.12.0762.
[23]潘一鸣,林家骏. 基于生成对抗网络的恶意网络流生成及验证[J]. 华东理工大学学报 (自然科学版), 2019,45(2):344-350.
[24]HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2016:770-778.
[25]KINGMA D P, BA J. Adam: A method for stochasticoptimization[J]. arXiv preprint arXiv:1412.6980, 2014.
[26]GULRAJANI I, AHMED F, ARJOVSKY M,et al. Improved training of Wasserstein GANS[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. 2017:5769-5779.
|