[1] 曹晓. 文本聚类研究综述[J]. 情报探索, 2016(1):131-134.
[2] 常鹏,冯楠. 基于词共现的文档表示模型[J]. 中文信息学报, 2012,26(1):51-58.
[3] SALTON G. A vector space model for automatic indexing[J]. Communications of the ACM, 1975,18(11):613-620.
[4] 吴光远,何丕廉,曹桂宏,等. 基于向量空间模型的词共现研究及其在文本分类中的应用[J]. 计算机应用, 2003(S1):138-140.
[5] WONG Z W. Generalized vector spaces model in information reteieval[C]// Proceedings of the 8th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. 1985:18-25.
[6] 牛奉高,邱均平. 数字文献资源高维向量表示模型与聚类检验[J]. 情报学报, 2014(10):1041-1045.
[7] 韩素青,贾茹. 基于稀疏约束非负矩阵分解的K-Means聚类算法[J]. 数据采集与处理, 2017,32(6):1216-1222.
[8] WITTEN D M, TIBSHIRANI R, HASTIE T. A penalized matrix decomposition, with applications to sparse principal components and canonical correlation analysis[J]. Biostatistics, 2009,10(3):515-524.
[9] ZHANG J, ZHENG C H, LIU J X, et al. Discovering the transcriptional modules using microarray data by penalized matrix decomposition[J]. Computers in Biology & Medicine, 2011,41(11):1041-1050.
[10]ZHENG C H, ZHANG L, NG V T, et al. Molecular pattern discovery based on penalized matrix decomposition[J]. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2011,8(6):1592-1603.
[11]王娟,范少萍,郑春厚. 基于惩罚性矩阵分解的文本聚类分析[J]. 情报学报, 2012,31(9):998-1008.
[12]LIU J X, ZHENG C H, XU Y. Extracting plants core genes responding to abiotic stresses by penalized matrix decomposition[J]. Computers in Biology & Medicine, 2012,42(5):582-589.
[13]俞仙子,高英莲,马春霞,等. 提取核心特征词的惩罚性矩阵分解方法——以其词分析为例[J]. 现代图书情报技术, 2014(3):88-95.
[14]邵作运,李秀霞. 惩罚性矩阵分解及其在共词分析中的应用[J]. 图书情报工作, 2015,59(13):126-133.
[15]LIU J, CHENG Y H, WANG X S, et al. Supervised penalty matrix decomposition for tumor differentially expressed genes selection[J]. Chinese Journal of Electronics, 2018,27(4):183-189.
[16]TROTTER J D, LANGUTH J, CAI X. Cache simulation for irregular memory traffic on multi-core CPUs: Case study on performance models for sparse matrix-vector multiplication[J]. Journal of Parallel and Distributed Computing, 2020,144(5):189-205.
[17]AJZERMAN M A, BRAVERMAN E M, ROZONOEHR L I. Theoretical foundations of the potential function method in pattern recognition learning[J]. Automation and Remote Control, 1964,25:821-837.
[18]CHEN H, ZHANG Y, GUTMAN I. A kernel-based clustering method for gene selection with gene expression data[J]. Journal of Biomedical Informatics, 2016,62(5):12-20.
[19]SIOLAS G, D’ALCHE-BUC F. Support vector machines based on a semantic kernel for text categorization[C]// Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks. 2000,5:205-209.
[20]CRISTIANINI N, SHAWE-TAYLOR J, LODHI H. Latent semantic kernels[J]. Journal of Intelligent Information Systems, 2002,18(2):127-152.
[21]MAVROEIDIS D, TSATSARONIS G, VAZIRGIANNIS M, et al. Word sense disambiguation for exploiting hierarchical thesauri in text classification[C]// Proceedings of the 9th European Conference on Principles and Practice of Knowledge Discovery in Databases. 2005:181-192.
[22]张玉峰,王志芳. 文本分类中的语义核函数研究[J]. 情报科学, 2010(7):12-17.
[23]NASIR J A, VARLAMIS I, KARIM A, et al. Semantic smoothing for text clustering[J]. Knowledge-Based Systems, 2013,54:216-229.
[24]KIM K, CHUNG B S, CHOI Y, et al. Language independent semantic kernels for short-text classification[J]. Expert Systems with Applications, 2014,41(2):735-743.
[25]WANG T H, LI W, LIU F L, et al. Sprinkled semantic diffusion kernel for word sense disambiguation[J]. Engineering Applications of Artificial Intelligence, 2017,64(5):43-51.
[26]徐炎,曹春萍. 语义核SVM结合改进EMD跨越语义鸿沟[J]. 轻工学报, 2019,34(3):77-83.
[27]李东博,黄铝文. 重加权稀疏主成分分析算法及其在人脸识别中的应用[J]. 计算机应用, 2020,40(3):717-722.
[28]牛奉高,张亚宇. 基于共现潜在语义向量空间模型的语义核构建[J]. 情报学报, 2017,36(8):834-842.
[29]KARYPIS G. CLUTO-A Clustering Toolkit[R]. Department of Computer Science, University of Minnesota, 2002.
|