[1] 缪前明. 城市智能交通系统分析及新技术应用设想[J]. 中国市政工程, 2014(2):1-3.
[2] 刘博艺,程杰仁,唐湘滟,等. 复杂动态环境下运动车辆的识别方法[J]. 计算机科学与探索, 2017,11(1):134-143.
[3] 王伟锋,金杰,陈景明. 基于感受野的快速小目标检测算法[J]. 激光与光电子学进展, 2020,57(2):250-255.
[4] 卞山峰,张庆辉. 基于改进YOLOv2的车辆实时检测算法[J]. 电子质量, 2019(10):19-22.
[5] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[C]// Proceedings of the 25th International Conference on Neural Information Processing Systems. 2012:1097-1105.
[6] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]// Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. 2014:580-587.
[7] UIJLINGS J R R, VAN DE SANDE K E A, GEVERS T, et al. Selective search for object recognition[J]. International Journal of Computer Vision, 2013,104(2):154-171.
[8] HE K M, ZHANG X Y, REN S Q, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015,37(9):1904-1916.
[9] GIRSHICK R. Fast R-CNN[C]// Proceedings of the 2015 IEEE International Conference on Computer Vision. 2015:1440-1448.
[10]REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[C]// Proceedings of the 28th International Conference on Neural Information Processing Systems. 2015:91-99.
[11]REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: Unified, real-time object detection[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. 2016:779-788.
[12]REDMON J, FARHADI A. YOLO9000: Better, faster, stronger[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. 2017:6517-6525.
[13]IOFFE S, SZEGEDY C. Batch normalization: Accelerating deep network training by reducing internal covariate shift[J]// Proceedings of the 32nd International Conference on Machine Learning. 2015:448-456.
[14]REDMON J, FARHADI A. YOLOv3: An incremental improvement[J]. arXiv preprint arXiv:1804.02767, 2018.
[15]鞠默然,罗海波,王仲博,等. 改进的YOLOv3算法及其在小目标检测中的应用[J]. 光学学报, 2019,39(7):245-252.
[16]刘军,后士浩,张凯,等. 基于增强Tiny YOLOv3算法的车辆实时检测与跟踪[J]. 农业工程学报, 2019,35(8):118-125.
[17]SZEGEDY C, LIU W, JIA Y Q, et al. Going deeper with convolutions[C]// Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. 2015:1-9.
[18]YU F, KOLTUN V. Multi-scale context aggregation by dilated convolutions[J]. arXiv preprint arXiv:1511.07122, 2015.
[19]刘学平,李玙乾,刘励,等. 嵌入SENet结构的改进YOLOv3目标识别算法[J]. 计算机工程, 2019,45(11):243-248.
[20]GEIGER A, LENZ P, URTASUN R. Are we ready for autonomous driving? The KITTI vision benchmark suite[C]// Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition. 2012:3354-3361.
[21]WEN L Y, DU D W, CAI Z W, et al. UA-DETRAC: A new benchmark and protocol for multi-object detection and tracking[J]. arXiv preprint arXiv:1511.04136, 2015.
[22]LYU S W, CHANG M C, DU D W, et al. UA-DETRAC 2017: Report of AVSS2017 & IWT4S challenge on advanced traffic monitoring[C]// Proceedings of the 2017 14th IEEE International Conference on Advanced Video and Signal Based Surveillance. 2017. DOI: 10.1109/AVSS.2017.8078560.
[23]ZHOU Y, LIU L, SHAO L, et al. Fast automatic vehicle annotation for urban traffic surveillance[J]. IEEE Transactions on Intelligent Transportation Systems, 2018,19(6):1973-1984.
[24]DOLLAR P, WOJEK C, SCHIELE B, et al. Pedestrian detection: A benchmark[C]// Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition. 2009:304-311.
|