[1] 张亮,龚卫国. 一种改进的维纳滤波语音增强算法[J]. 计算机工程与应用, 2010,46(26):129-131.
[2] 程履帮. OFDMA系统中基于LMMSE信道估计算法的改进及其性能分析[J]. 电子学报, 2008,36(9):1782-1785.
[3] 赵胜跃,戴蓓蒨. 基于最小统计噪声估计的信号子空间语音增强[J]. 数据采集与处理, 2007,22(4):453-457.
[4] LU X G, UNOKI M, MATSUDA S, et al. Controlling tradeoff between approximation accuracy and complexity of a smooth function in a reproducing Kernel Hilbert Space for noise reduction[J]. IEEE Transactions on Signal Processing, 2013,61(3):601-610.
[5] HINTON G E, SALAKHUTDINOV R R. Reducing the dimensionality of data with neural networks[J]. Science, 2006,313(5786):504-507.
[6] GRAVES A, MOHAMED A R, HINTON G. Speech recognition with deep recurrent neural networks[C]// 2013 IEEE International Conference on Acoustics, Speech and Signal Processing. 2013:6645-6649.
[7] 李彦冬,郝宗波,雷航. 卷积神经网络研究综述[J]. 计算机应用, 2016,36(9):2508-2515.
[8] GOODFELLOW I J, POUGET-ABADIE J, MIRZA M. Generative adversarial nets[C]// Proceedings of the 27th International Conference on Neural Information Processing Systems. 2014:2672-2680.
[9] PASCUAL S, BONAFONTE A, SERRA J. SEGAN: Speech enhancement generative adversarial network[C]// Interspeech 2017. 2017:3642-3646.
[10]MICHELSANT I D, TAN Z. Conditional generative adversarial networks for speech enhancement and noise-robust speaker verification[C]// Interspeech 2017. 2017:2008-2012.
[11]王怡斐,韩俊刚,樊良辉. 基于WGAN的语音增强算法研究[J]. 重庆邮电大学学报(自然科学版), 2019,31(1):136-142.
[12]PASCUAL S, SERRA J, BONAFONTE A. Time-domain speech enhancement using generative adversarial networks[J]. Speech Communication, 2019,114:10-21.
[13]李涛. 基于CycleGAN网络实现非平行语料库条件下的语音转换[D]. 大连:大连理工大学, 2018.
[14]KANEKO T, KAMEOKA H. CycleGAN-VC: Non-parallel voice conversion using cycle-consistent adversarial networks[C]// 2018 26th European Signal Processing Conference(EUSIPCO). 2018:2100-2104.
[15]ZHU J Y, PARK T, ISOLA P, et al. Unpaired image-to-image translation using cycle-consistent adversarial networks[C]// 2017 IEEE International Conference on Computer Vision. 2017:2242-2251.
[16]KIM T, CHA M, KIM H, et al. Learning to discover cross-domain relations with generative adversarial networks[C]// Proceedings of the 34th International Conference on Machine Learning. 2017:1857-1865.
[17]YI Z L, ZHANG H, TAN P, et al. DualGAN: Unsupervised dual learning for image-to-image translation[C]// 2017 IEEE International Conference on Computer Vision. 2017:2868-2876.
[18]ZHOUT H, KRAHENBUHL P, AUBRY M, et al. Learning dense correspondence via 3D-guided cycle consistency[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition. 2016:117-126.
[19]HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition. 2016:770-778.
[20]ISOLA P, ZHU J Y, ZHOU T H, et al. Image-to-image translation with conditional adversarial networks[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition. 2017:5967-5976.
[21]CHOI Y, CHOI M, KIM M, et al. StarGAN: Unified generative adversarial networks for multi-domain image-to-image translation[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2018:8789-8797.
[22]ZHANG C L, LUO J H, WEI X S, et al. In defense of fully connected layers in visual representation transfer[C]// Pacific Rim Conference on Multimedia. 2017:807-817.
[23]GULRAJANI I, AHMED F, ARJOVSKY M, et al. Improved training of Wasserstein GANs[C]// Advances in Neural Information Processing Systems. 2017:5769-5779.
[24]VALENTINI-BOTINHAO C, WANG X, TAKAKI S, et al. Investigating RNN-based speech enhancement methods for noise-robust text-to-speech[C]// The 9th ISCA Speech Synthesis Workshop. 2016:146-152.
|