[1] 杨锦锋,于秋滨,关毅,等. 电子病历命名实体识别和实体关系抽取研究综述[J]. 自动化学报, 2014,40(8):1537-1562.
[2] 梁书彤,郭茂祖,赵玲玲. 基于机器学习的医疗决策支持系统综述[J]. 计算机工程与应用, 2019,55(19):1-11.
[3] SANG S T, YANG Z H, LIU X X, et al. GrEDeL: A knowledge graph embedding based method for drug discovery from biomedical literatures[J]. IEEE Access, 2018,7:8404-8415.
[4] JAGANNATHA A N, YU H. Bidirectional RNN for medical event detection in electronic health records[C]// Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. 2016:473-482.
[5] FRIEDMAN C, ALDERSON P O, AUSTIN J H M, et al. A general natural-language text processor for clinical radiology[J]. Journal of the American Medical Informatics Association, 1994,1(2):161-174.
[6] GAIZAUSKAS R, DEMETRIOU G, HUMPHREYS K. Term recognition and classification in biological science journal articles[C]// Proceedings of the Computional Terminology for Medical and Biological Applications Workshop of the 2nd International Conference on NLP. 2000:37-44.
[7] ZHOU G D, SU J. Named entity recognition using an HMM-based chunk tagger[C]// Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics. 2002:473-480.
[8] JOZEFOWICZ R, ZAREMBA W, SUTSKEVER I. An empirical exploration of recurrent network architectures[C]// Proceedings of the 32nd International Conference on Machine Learning. 2015:2342-2350.
[9] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. 2017:6000-6010.
[10]DEVLIN J, CHANG M W, LEE K, et al. BERT: Pre-training of deep bidirectional transformers for language understanding[C]// Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. 2019:4171-4186.
[11]CUI Y M, CHE W Y, LIU T, et al. Revisiting pre-trained models for Chinese natural language processing[J]. arXiv: 2004.13922, 2020.
[12]SONG M, YU H, HAN W S. Developing a hybrid dictionary-based bio-entity recognition technique[J]. BMC Medical Informatics and Decision Making, 2015,15(S1): Article No. S9.
[13]LIANG J, XIAN X M, HE X J, et al. A novel approach towards medical entity recognition in Chinese clinical text[J]. Journal of Healthcare Engineering, 2017,2017: Article ID 4898963.
[14]LI Z, ZHANG Q, LIU Y, et al. Recurrent neural networks with specialized word embedding for Chinese clinical named entity recognition[C]// CEUR Workshop Proceedings. 2017,1976:55-60.
[15]XIA Y H, WANG Q. Clinical named entity recognition: ECUST in the CCKS-2017 shared task 2[C]// CEUR Workshop Proceedings. 2017,1976:43-48.
[16]ZHU YY, WANG GY, KARLSSON B F. CAN-NER: Convolutional attention network for Chinese named entity recognition[C]// Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. 2019:3384-3393.
[17]PETERS M E, NEUMANN M, IYYER M, et al. Deep contextualized word representations[C]// Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. 2018:2227-2237.
[18]HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997,9(8):1735-1780.
[19]LAFFERTY J D, MCCALLUM A, PEREIRA F C N. Conditional random fields: Probabilistic models for segmenting and labeling sequence data[C]// Proceedings of the 18th International Conference on Machine Learning. 2001:282-289.
[20]马孟铖,杨晴雯,艾斯卡尔·艾木都拉,等. 基于词向量和条件随机场的中文命名实体分类[J]. 计算机工程与设计, 2020,41(9):2515-2522.
[21]李文洁,张晴晴,张鹏远,等. 基于维特比算法的深度神经网络语音端点检测[J]. 重庆邮电大学学报(自然科学版), 2018,30(2):210-215.
[22]柏兵,侯霞,石松. 基于CRF和BI-LSTM的命名实体识别方法[J]. 北京信息科技大学学报(自然科学版), 2018,33(6):27-33.
[23]陈剑,何涛,闻英友,等. 基于BERT模型的司法文书实体识别方法[J]. 东北大学学报(自然科学版), 2020,41(10):1382-1387.
|