[1] 张明钟. 5G时代运营商创新流量经营策略[J]. 通信企业管理, 2018(10):60-61.
[2] LI L,WANG M, ZHANG L, et al. Learning semantic similarity for multi-label text categorization[C]// Chinese Lexical Semantics 15th Workshop. 2014:260-269.
[3] RUBIN T N, CHAMBERS A, SMYTH P, et al. Statistical topic models for multi-label document classification [J]. Machine Learning, 2012,88(1-2):157-208.
[4] JIANG J Y, TSAI S C, LEE S J. FSKNN: Multi-label text categorization based on fuzzy similarity and k nearest neighbors[J]. Expert Systems with Applications, 2012,39(3):2813-2821.
[5] LIU S M, CHEN J H. A multi-label classification based approach for sentiment classification[J]. Expert Systems with Applications, 2015,42(3):1083-1093.
[6] HUANG S, PENG W, LI J X, et al. Sentiment and topic analysis on social media:A multi-task multi-label classification approach[C]// Proceedings of the 5th Annual ACM Web Science Conference. 2013:172-181.
[7] LO H Y, WANG J C, WANG H M, et al. Cost-sensitive multilabel learning for audio tag annotation and retrieval[J]. IEEE Transactions on Multimedia, 2011,13(3):518-529.
[8] WU B Y, LYU S W, HU B G, et al. Multi-label learning with missing labels for image annotation and facial action unit recognition[J]. Pattern Recognition, 2015,48(7):2279-2289.
[9] ZHANG M L, ZHOU Z H. Multi-label neural networks with applications to functional genomics and text categorization[J]. IEEE Transactions on Knowledge and Data Engineering, 2006,18(10):1338-1351.
[10]ZHOU Y, XUE H, GENG X. Emotion distribution recognition from facial expressions[C]// Proceedings of the 2015 ACM Multimedia Conference. 2015:1247-1250.
[11]刘阳. 多标签数据分类技术研究[D]. 西安:西安电子科技大学, 2018.
[12]QI H W, ZHOU Y Q, GUO Q. A hierarchical ML-KNN method for complex emotion analysis on customer reviews[C]// International Conference on Mechatronics Engineering and Information Technology. 2016:74-79.
[13]YANG X D, ZHOU L H, WANG L Z. An improved ML-KNN approach based on coupled similarity[C]// Asia-Pacific Web Conference. 2016:77-89.
[14]MAHDAVI-SHAHRI A, HOUSHMAND M, YAGHOOBI M , et al. Applying an ensemble learning method for improving multi-label classification performance[C]// 2016 2nd International Conference of Signal Processing and Intelligent Systems (ICSPIS). 2016:170-175.
[15]余鹰. 多标记学习研究综述[J]. 计算机工程与应用, 2015,51(17):20-27.
[16]李思男,李宁,李战怀. 多标签数据挖掘技术:研究综述[J]. 计算机科学, 2013,40(4):14-21.
[17]郑伟,王朝坤,刘璋,等. 一种基于随机游走模型的多标签分类算法[J]. 计算机学报, 2010,33(8):1418-1426.
[18]ZHANG M L, ZHOU Z H. A review on multi-label learning algorithms[J]. IEEE Transactions on Knowledge and Data Engineering, 2014,26(8):1819-1837.
[19]TSOUMAKAS G, KATAKIS I, VLAHAVAS L. Random k-Labelsets for multilabel classification[J]. IEEE Transactions on Knowledge & Data Engineering, 2011,23(7):1079-1089.
[20]GEURTS P, ERNST D, WEHENKEL L. Extremely randomized trees[J]. Machine Learning, 2006,63(1):3-42.
[21]FOLORUNSO S O, FASHOTO S G, OLAOMI J, et al. A multi-label learning model for psychotic diseases in Nigeria[J]. Informatics in Medicine Unlocked, 2020,19:100326.
[22]林倩瑜. 云服务环境下的大数据多标签属性分类技术[J]. 微电子学与计算机, 2019,36(2):101-104.
[23]王进,王鸿,夏翠萍,等. 基于Spark的组合分类器链多标签分类方法[J]. 中国科学技术大学学报, 2017,47(4):350-357.
|