[1] NUNES B A A, MENDONCA M, NGUYEN X N, et al. A survey of software-defined networking: Past, present, and future of programmable networks[J]. IEEE Communications Surveys and Tutorials, 2014,16(3):1617-1634.
[2] 左青云,陈鸣,赵广松,等. 基于OpenFlow的SDN技术研究[J]. 软件学报, 2013,24(5):1078-1097.
[3] KIRKPATRICK K. Software-defined networking[J]. Communications of the ACM, 2013,56(9):16-19.
[4] ZHOU L N, JIANG H, ZHOU X L. A survey of traceback based on probabilistic packet marking under DDoS attacks[J]. Journal of Physics Conference Series, 2019,1213(5):052057.
[5] LUKASEDER T, HUNT A, STEHLE C, et al. An extensible Host-agnostic framework for SDN-assisted DDoS-mitigation[C]// 2017 IEEE 42nd Conference on Local Computer Networks. 2017,1:619-622.
[6] BEHAL S, KUMAR K, SACHDEVA M. D-FACE: An anomaly based distributed approach for early detection of DDoS attacks and flash events[J]. Journal of Network & Computer Applications, 2018,111:49-63.
[7] HOSSEINI S, AZIZI M. The hybrid technique for DDoS detection with supervised learning algorithms[J]. Computer Networks, 2019,158:35-45.
[8] YE J, CHENG X Y, JIAN Z, et al. A DDoS attack detection method based on SVM in software defined network[J]. Security and Communication Networks, 2018(4):1-8.
[9] SHANG G, ZHE P, BIN X, et al. FloodDefender: Protecting data and control plane resources under SDN-aimed DoS attacks[C]// IEEE INFOCOM 2017-IEEE Conference on Computer Communications. 2017:1-9.
[10]GIOTIS K, ARGYROPOULOS C, ANDROULIDAKIS G, et al. Combining OpenFlow and sFlow for an effective and scalable anomaly detection and mitigation mechanism on SDN environments[J]. Computer Networks, 2014,62:122-136.
[11]GUO R, YIN H, WANG D Q, et al. Research on the active DDoS filtering algorithm based on IP flow[J]. International Journal of Communications Network & System Sciences, 2009,2(7):628-632.
[12]MOUSAVI S M, ST-HILAIRE M. Early detection of DDoS attacks against software defined network controllers[J]. Journal of Network and Systems Management, 2018,26(3):573-591.
[13]ROBINSON R R, THOMAS C. Ranking of machine learning algorithms based on the performance in classifying DDoS attacks[C]// 2015 IEEE Recent Advances in Intelligent Computational Systems. 2015, DOI:10.1109/RAICS.2015.7488411.
[14]梅梦喆. SDN中基于多维条件熵的DDoS攻击检测与防护研究[D]. 南昌:南昌航空大学, 2016.
[15]孙国友. 云环境SDN/OpenFlow网络中安全可靠的网络控制方法研究[D]. 合肥:中国科学技术大学, 2017.
[16]肖甫,马俊青,黄洵松,等. SDN环境下基于KNN的DDoS攻击检测方法[J]. 南京邮电大学学报(自然科学版), 2015,35(1):84-88.
[17]LIU J, LAI Y X, ZHANG S X. FL-GUARD: A detection and defense system for DDoS attack in SDN[C]// Proceedings of 2017 International Conference on Cryptography, Security and Privacy. 2017:107-111.
[18]THAPNGAM T, YU S, ZHOU W L, et al. Discriminating DDoS attack traffic from flash crowd through packet arrival patterns[C]// 2011 IEEE Conference on Computer Communications Workshops. 2011:952-957
[19]CHEN Z, JIANG F, CHENG Y J, et al. XGBoost classifier for DDoS attack detection and analysis in SDN-based cloud[C]// IEEE International Conference on Big Data & Smart Computing. 2018:251-256.
[20]李蕊,张路桥,李海峰,等. 基于熵的网络异常流量检测研究综述[J]. 计算机系统应用, 2017,26(6):36-39.
[21]DONG S J, XU X Y, CHEN R X. Application of fuzzy C-means method and classification model of optimized K-nearest neighbor for fault diagnosis of bearing[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2016,38:2255-2263.
[22]MEHR S Y, RAMAMURTHY B. An SVM based DDoS attack detection method for Ryu SDN controller[C]// Proceedings of the 15th International Conference on Emerging Networking Experiments and Technologies. 2019:72-73.
[23]GU Y H, LI K Y, GUO Z Y, et al. Semi-supervised K-means DDoS detection method using hybrid feature selection algorithm[J]. IEEE Access, 2019,7:351-365.
|