[1] MA X L, WU Y J, WANG Y H, et al. Mining smart card data for transit riders’ travel patterns[J]. Transportation Research Part C: Emerging Technologies, 2013,36:1-12.
[2] ZHANG Y P, MARTENS K, LONG Y. Revealing group travel behavior patterns with public transit smart card data[J]. Travel Behaviour and Society, 2018,10:42-52.
[3] ZHANG Y P, LIU L. Understanding temporal pattern of human activities using temporal areas of interest[J]. Applied Geography, 2018,94:95-106.
[4] ZHANG Y P, LIU L, WANG H. A new perspective on the temporal pattern of human activities in cities: The case of Shanghai[J]. Cities, 2019,87:196-204.
[5] 刘瑜,肖昱,高松,等. 基于位置感知设备的人类移动研究综述[J]. 地理与地理信息科学, 2011,27(4):8-13.
[6] 杨喜平,方志祥. 移动定位大数据视角下的人群移动模式及城市空间结构研究进展[J]. 地理科学进展, 2018,37(7):880-889.
[7] SAGL G, DELMELLE E, DELMELLE E. Mapping collective human activity in an urban environment based on mobile phone data[J]. Cartography and Geographic Information Science, 2014,41(3):272-285.
[8] 徐金垒,方志祥,萧世伦,等. 城市海量手机用户停留时空分异分析:以深圳市为例[J]. 地球信息科学学报, 2015,17(2):197-205.
[9] 曹劲舟,涂伟,李清泉,等. 基于大规模手机定位数据的群体活动时空特征分析[J]. 地球信息科学学报, 2017,19(4):467-474.
[10]ZHAO Z L, SHAW S L, XU Y, et al. Understanding the bias of call detail records in human mobility research[J]. International Journal of Geographical Information Science, 2016,30(9):1738-1762.
[11]STEIGER E, WESTERHOLT R, RESCH B, et al. Twitter as an indicator for whereabouts of people? Correlating Twitter with UK census data[J]. Computers, Environment and Urban Systems, 2015,54:255-265.
[12]HU W S, JIN P J. An adaptive hawkes process formulation for estimating time-of-day zonal trip arrivals with location-based social networking check-in data[J]. Transportation Research Part C: Emerging Technologies, 2017,79:136-155.
[13]李丛敏,李杰,张康,等. 面向签到日志的用户行为模式交互探索[J]. 软件学报, 2019,30(6):1819-1834.
[14]ZHANG J Q, CHEN Z H, LIU Y Q, et al. Space-time visualization analysis of bus passenger big data in Beijing[J]. Cluster Computing, 2018,21(1):813-825.
[15]张欣环,吴一昊,吴金洪,等. 基于IC卡和GPS信息的城市常规公交客流分析[J]. 浙江师范大学学报(自然科学版), 2019,42(2):208-214.
[16]YU W, BAI H, CHEN J, et al. Analysis of space-time variation of passenger flow and commuting characteristics of residents using smart card data of Nanjing metro[J]. Sustainability, 2019,11(18):4989-5007.
[17]张超,潘海啸. 市郊轨道交通站点周边居民购物出行研究:以上海市为例[J]. 城市规划, 2019,43(3):96-103.
[18]张俊涛,武芳,张浩. 利用出租车轨迹数据挖掘城市居民出行特征[J]. 地理与地理信息科, 2015,31(5):104-108.
[19]程静,刘家骏,高勇. 基于时间序列聚类方法分析北京出租车出行量的时空特征[J]. 地球信息科学学报, 2016,18(9):1227-1239.
[20]ZHANG H, SHI B Y, ZHUGE C X, et al. Detecting taxi travel patterns using GPS trajectory data: A case study of Beijing[J]. KSCE Journal of Civil Engineering, 2019,23(4):1797-1805.
[21]ZHANG S, LIU X, TANG J J, et al. Urban spatial structure and travel patterns: Analysis of weekday and holiday travel using inhomogeneous Poisson point process models[J]. Computers, Environment and Urban Systems, 2019,73:68-84.
[22]FAN P L, XU L L, YUE W Z, et al. Accessibility of public urban green space in an urban periphery: The case of Shanghai[J]. Landscape & Urban Planning, 2017,165:177-192.
[23]KAUFMAN L, ROUSSEEUW P J. Finding Groups in Data: An Introduction to Cluster Analysis[M]. Hoboken, New Jersey, USA: John Wiley & Sons, 1990.
|