计算机与现代化 ›› 2020, Vol. 0 ›› Issue (11): 83-88.

• 算法设计与分析 • 上一篇    下一篇

改进的CamShift无人机目标跟踪算法

  

  1. (兰州理工大学计算机与通信学院,甘肃兰州730050)
  • 出版日期:2020-12-03 发布日期:2020-12-03
  • 作者简介:李睿(1971—),女,甘肃秦安人,教授,硕士生导师,硕士,研究方向:模式识别,数字图像处理,智能信息处理,数字水印,E-mail: 392457394@qq.com; 商家赫(1994—),男,黑龙江齐齐哈尔人,硕士研究生,研究方向:模式识别与人工智能,E-mail: shangjiahe1994@gmail.com。
  • 基金资助:
    国家自然科学基金资助项目(61761028); 甘肃省科技计划项目(18YF1GA060)

Improved CamShift UAV Target Tracking Algorithm

  1. (School of Computer and Communication, Lanzhou University of Technology, Lanzhou 730050, China)
  • Online:2020-12-03 Published:2020-12-03

摘要: 目前,无人机视频目标跟踪算法在应用方面仍存在一些问题,比如在光照不均、目标发生旋转、目标被遮挡的情况下跟踪效果不佳。因此,本文提出一种结合HLBP特征匹配与Kalman滤波的CamShift跟踪算法。首先通过HLBP算法对目标特征进行提取,获得更准确的纹理特征,进而减小光照变化以及目标旋转对特征提取造成的干扰,其次通过巴氏距离对目标遮挡程度进行判断,最后结合Kalman滤波算法对目标位置进行预测,能够有效解决目标发生遮挡时跟踪效果不佳的问题。实验结果表明,在无人机目标跟踪的实际应用中,改进算法能够有效降低外在干扰对跟踪效果的影响,跟踪精度得到提升。

关键词: 无人机, 目标跟踪, CamShift跟踪算法, HLBP纹理处理, Kalman滤波算法

Abstract: At present, there are still some problems in the application of UAV video target tracking algorithms. For example, the tracking effect is not good when the illumination is uneven, the target rotates, and the target is blocked. Therefore, this paper proposes a CamShift tracking algorithm combining HLBP feature matching with Kalman filtering. First, the target features are extracted by the HLBP algorithm to obtain more accurate texture features, and then the interference caused by the change in illumination and the target rotation to the feature extraction is reduced. Second, the degree of occlusion of the target is judged by Bhattacharyya distance. Finally, the Kalman filter algorithm is used in the prediction of the target position, which can effectively solve the problem of poor tracking effect when the target is blocked. The experimental results show that in the practical application of UAV target tracking, the improved algorithm can effectively reduce the impact of external interference on the tracking effect, and the tracking accuracy is improved.


Key words: UAV, target tracking, CamShift tracking algorithm, HLBP texture processing, Kalman filtering algorithm