[1] 魏欣,蒋华伟. 基于纹理和结构的图像修复算法研究[J]. 计算机技术与发展, 2010,20(9):90-93.
[2] 徐书方. 图像去噪偏微分方程综合模型的研究[D]. 大连:大连理工大学, 2010.
[3] 廉晓丽,徐中宇,冯丽丽,等. 一种新的基于偏微分方程的图像修复[J]. 计算机工程, 2009,35(6):234-236.
[4] CRIMINISI A, PEREZ P, TOYAMA K. Region filling and object removal by exemplar-based image inpainting[J]. IEEE Transactions on Image Processing, 2004,13(9):1200-1212.
[5] CHEN Y P, PENG Z M, LI M H, et al. Seismic signal denoising using total generalized variation with overlapping group sparsity in the accelerated ADMM framework[J]. Journal of Geophysics and Engineering, 2019,16(1):30-51.
[6] 彭真明,陈颖频,蒲恬,等. 基于稀疏表示及正则约束的图像去噪方法综述[J]. 数据采集与处理, 2018,33(1):1-11.
[7] 肖亮. 基于变分PDE和多重分形的图像建模理论、算法与应用[D]. 南京:南京理工大学, 2003.
[8] 孙向荣,刘芳芳. 图像修复TV模型的快速算法研究[J]. 计算机技术与发展, 2014,21(11):144-147.
[9] LIU X G, CHEN Y P, PENG Z M, et al. Infrared image super-resolution reconstruction based on quaternion fractional order total variation with Lp quasinorm[J]. Applied Sciences, 2018,8(10): Article No.1864, DOI: 10.3390/app8101864.
[10]ZHAO Y Q, JI D J, CHEN Y P, et al. A new in-line X-ray phase-contrast computed tomography reconstruction algorithm based on adaptive-weighted anisotropic TpV regularization for insufficient data[J]. Journal of Synchrotron Radiation, 2019,26(4):1330-1342.
[11]林凡,程祝媛,陈颖频,等. 基于交叠组合稀疏全变分的图像去噪方法[J]. 科学技术与工程, 2018(18):67-73.
[12]KNOLL F, BREDIES K, POCK T, et al. Second order total generalized variation (TGV) for MRI[J]. Magnetic Resonance in Medicine, 2011,65(2):480-491.
[13]BREDIES K, HOLLER M. Regularization of linear inverse problems with total generalized variation[J]. Journal of Inverse and Ill-Posed Problems, 2014,22(6):871-913.
[14]BREDIES K, KUNISCH K, POCK T. Total generalized variation[J]. SIAM Journal on Imaging Sciences, 2010,3(3):492-526.
[15]KNOLL F, SCHULTZ G, BREDIES K, et al. Reconstruction of undersampled radial PatLoc imaging using total generalized variation[J]. Magnetic Resonance in Medicine, 2013,70(1):40-52.
[16]KONG D H, PENG Z M. Seismic random noise attenuation using shearlet and total generalized variation[J]. Journal of Geophysics and Engineering, 2015,12(6):1024-1035.
[17]LIU X G, CHEN Y P, PENG Z M, et al. Total variation with overlapping group sparsity and Lp quasinorm for infrared image deblurring under salt-and-pepper noise[J]. Journal of Electronic Imaging, 2019,28(4):043031.
[18]NIU S, GAO Y, BIAN Z, et al. Sparse-view x-ray CT reconstruction via total generalized variation regularization[J]. Physics in Medicine and Biology, 2014,59(12):2997-3017.
[19]董卫东,彭宏京. 基于紧框架的二阶总广义变分图像修复模型[J]. 计算机工程与应用, 2018,54(11):178-184.
[20]CHAMBOLLE A, POCK T. A first-order primal-dual algorithm for convex problems with applications to imaging[J]. Journal of Mathematical Imaging and Vision, 2011,40(1):120-145.
[21]DU Y, CHEN Y P, MENG G Y, et al. Fault severity monitoring of rolling bearings based on texture feature extraction of sparse time-frequency images[J]. Applied Sciences, 2018,8(9): Article No.1538, DOI: 10.3390/app8091538.
[22]WANG Z, BOVIK A C, SHEIKH H R, et al. Image quality assessment: From error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 2004,13(4):600-612.
[23]LI S, HE Y M, CHEN Y P, et al. Fast multi-trace impedance inversion using anisotropic total p-variation regularization in the frequency domain[J]. Journal of Geophysics and Engineering, 2018,15(5):2171-2182.
|