[1] ZHU C M, WANG Z. Entropy-based matrix learning machine for imbalanced data sets[J]. Pattern Recognition Letters, 2017,88:72-80.
[2] ZONG W W, HUANG G B, CHEN Y Q. Weighted extreme learning machine for imbalance learning[J]. Neurocomputing, 2013,101:229-242.
[3] LIU Y H, CHEN Y T. Face recognition using total margin-based adaptive fuzzy support vector machines[J]. IEEE Transactions on Neural Networks, 2007,18(1):178-192.
[4] 刘鹏,杜佳枝,吕伟刚,等. 面向不平衡数据集的一种改进的k-近邻分类器[J]. 东北大学学报(自然科学版), 2019,40(7):932-936.〖HJ1.1mm〗
[5] YANG Z, TANG W H, SHINTEMIROV A, et al. Association rule mining-based dissolved gas analysis for fault diagnosis of power transformers[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 2009,39(6):597-610.
[6] SUN Y M, WONG A K C, KAMEL M S. Classification of imbalanced data: A review[J]. International Journal of Pattern Recognition and Artificial Intelligence, 2009,34(4):687-719.
[7] CHENG F Y, ZHANG J, WEN C H, et al. Large cost-sensitive margin distribution machine for imbalanced data classification[J]. Neurocomputing, 2017,224:45-57.
[8] CASTRO C L, BRAGA A P. Novel cost-sensitive approach to improve the multilayer perceptron performance on imbalanced data[J]. IEEE Transactions on Neural Networks and Learning Systems, 2013,24(6):888-899.
[9] 杨健健,唐至威,王晓林,等. 单类学习下基于VSAPSO-BP的掘进机异常检测方法[J]. 振动、测试与诊断, 2019,39(1):130-135.
[10]李勇,刘战东,张海军. 不平衡数据的集成分类算法综述[J]. 计算机应用研究, 2014,31(5):1287-1291.
[11]曹雅茜,黄海燕. 基于概率采样和集成学习的不平衡数据分类算法[J]. 计算机科学, 2019,46(5):203-208.
[12]CHAWLA N V, BOWYER K W, HALL L O, et al. SMOTE: Synthetic minority over-sampling technique[J]. Journal of Artificial Intelligence Research, 2002,16(1):321-357.
[13]HE H B, BAI Y, GARCIA E A, et al. ADASYN: Adaptive synthetic sampling approach for imbalanced learning[C]// Proceedings of the 2018 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence). 2008:1322-1328.
[14]SEIFFERT C, KHOSHGOFTAAR T M, VAN HULSE J. Hybrid sampling for imbalanced data[C]// Proceedings of the 2008 IEEE International Conference on Information Reuse and Integration. 2008:202-207.
[15]GAZZAH S, HECHKEL A, BEN AMARA N E. A hybrid sampling method for imbalanced data[C]// Proceedings of the 2015 IEEE 12th International Multi-Conference on Systems, Signals and Devices. 2015, DOI: 10.1109/SSD.2015.7348093.
[16]张雨金,杨凌帆,葛双冶,等. 基于Kmeans-SVM的短期光伏发电功率预测[J]. 电力系统保护与控制, 2018,46(21):118-124.
[17]FRIEDMAN J H. Greedy function approximation: A gradient boosting machine[J]. The Annals of Statistics, 2001,29(5):1189-1232.
[18]FRIEDMAN J H. Stochastic gradient boosting[J]. Computational Statistics and Data Analysis, 2002,38(4):367-378.
[19]BLAKE C L, KEOGH E, MERZ C J. UCI Repository of Machine Learning Databases[DB/OL]. [2019-06-17]. ftp://ftp.ics.uci.edu/pub/machine-learning-databases.
[20]周志华. 机器学习[M]. 北京:清华大学出版社, 2016:33-35. |