计算机与现代化 ›› 2015, Vol. 0 ›› Issue (5): 85-89.doi: 10.3969/j.issn.1006-2475.2015.05.018

• 网络与通信 • 上一篇    下一篇

动态修正下的神经网络盲均衡算法

  

  1. (中山大学新华学院信息科学系,广东 广州 510520
  • 收稿日期:2015-01-29 出版日期:2015-05-18 发布日期:2015-05-18
  • 作者简介:赵慧青(1978-),女,浙江杭州人,中山大学新华学院信息科学系助教,硕士,研究方向:计算机网络通信,多媒体信息处理。

Neural Network Blind Equalization Algorithm Under Dynamic Correction

  1. (Department of Information Science, Xinhua College of Sun Yat-sen University, Guangzhou 510520, China)
  • Received:2015-01-29 Online:2015-05-18 Published:2015-05-18

摘要: 针对现有的神经网络算法收敛速度慢以及精确度低的问题,通过对传统的神经网络盲均衡算法以及前馈神经网络进行研究,提出一种具有自动修正效果的前馈神经网络盲均衡算法。该算法通过对算法中的代价函数以及迭代步长因子进行改进,来提高算法的收敛速度;通过对所获得的目标信号进行修正处理,来对所获取的信息进行修正。实验结果表明,该算法的实验结果与预期效果基本相符,具有可靠性强、收敛速度快的优势。

关键词: 神经网络, 动态修正, 盲均衡, 前馈, 代价函数

Abstract: Existing neural network algorithms have the problems of slow convergence speed and low accuracy. In response to this phenomenon, we study traditional neural network blind equalization algorithms and feed forward neural networks, and present a feed forward neural network blind equalization algorithm with the effect of automatic correction. The convergence speed of the algorithm is improved by improving the cost function and iterative step factor. The acquired information is corrected by correcting the acquired target signals. Experimental results show that they are basically consistent with the expected results, and it is of the advantages of high reliability and fast convergence speed.

Key words: neural network, dynamic correction, blind equalization, feed forward, cost function

中图分类号: