计算机与现代化 ›› 2025, Vol. 0 ›› Issue (08): 57-62.doi: 10.3969/j.issn.1006-2475.2025.08.008

• 信息安全 • 上一篇    下一篇

基于ATT&CK框架和Bert模型的恶意代码同源性分析方法

  

  1. (公安部第三研究所,上海 200031)
  • 出版日期:2025-08-27 发布日期:2025-08-27
  • 作者简介: 作者简介:通信作者:郑啸宇(1995—),男,安徽黄山人,助理研究员,硕士,研究方向:网络空间安全,恶意代码分析,E-mail: zhengxiaoyu@gass.cn。

Malicious Code Homology Analysis Method Based on ATT&CK Framework and Bert Model


  1. (The Third Research Institute of The Ministry of Public Security, Shanghai 200031, China) 
  • Online:2025-08-27 Published:2025-08-27

摘要:
摘要:当前,恶意程序攻击是威胁网络空间安全的主要因素之一。通过对已知组织的恶意程序开展分析,并依托相似特征对未知恶意程序开展同源性判定,有助于识别未知恶意程序和归因攻击组织。但现有的同源性分析模型存在人工提取特征复杂度高、不适用于大规模分析场景、效率低、未深入考虑攻击行为间传递关系等问题。本文提出一种基于ATT&CK框架和Bert模型的同源性识别模型,通过ATT&CK框架中的高维度的攻击技术和战术,解决静态特征面对代码混淆、多态等情况导致的同源识别准确率低的问题。并利用Bert模型,有效融合恶意代码的多维特征,解决以循环神经网络为主的分析方法对序列建模不足的问题。实验结果表明,本文提出的方案可有效识别恶意代码间的同源性。



关键词: 关键词:恶意代码; 同源性分析; ATT&, CK框架; Bert模型

Abstract:
Abstract: At present, malware attacks are one of the main threats to cyberspace security. By analyzing malicious programs from known organizations and determining the homology of unknown malicious programs based on similar characteristics, it is helpful to identify unknown malicious programs and attribution attack organizations. However, the existing homology analysis models have some problems, such as high complexity of manual feature extraction, inadaptability to large-scale analysis scenarios, low efficiency, and lack of in-depth consideration of the transmission relationship between attack behaviors. This paper proposes a homology recognition model based on the ATT&CK framework and the Bert(bidirectional encoder representation from transformers) model, which solves the problem of low homology recognition accuracy caused by code confusion and polymorphism in the face of static features through high-dimensional attack techniques and tactics in the ATT&CK framework. The Bert model is used to effectively integrate the multi-dimensional features of malicious code, and solve the problem of insufficient sequence modeling by recurrent neural network-based analysis methods. Experimental results show that the proposed scheme can effectively identify the homology between malicious codes.

Key words: Key words: malicious code; homology analysis; ATT&, CK framework; Bert model ,

中图分类号: