计算机与现代化 ›› 2025, Vol. 0 ›› Issue (07): 112-118.doi: 10.3969/j.issn.1006-2475.2025.07.016

• 算法设计与分析 • 上一篇    下一篇

融合自注意力的Bert-BiGRU-CRF的文本因果关系抽取

  


  1. (西安工程大学计算机科学学院,陕西 西安 710048)
  • 出版日期:2025-07-22 发布日期:2025-07-22
  • 作者简介:作者简介:高宁波(1998—),男,陕西渭南人,硕士研究生,研究方向:自然语言处理,E-mail: vitobo9310@163.com; 通信作者:张晓滨(1970—),男,山西大同人,副教授,硕士生导师,硕士,研究方向:数据挖掘和个性化服务技术与应用,E-mail: vitobo9310@163.com。
  • 基金资助:
      基金项目:陕西省自然科学基础研究计划项目(2023-JC-YB-568)

Bert-BiGRU-CRF with Self-attention Fusion for Text Causal Relationship Extraction



  1. (School of Computer Science, Xi’an Polytechnic University, Xi’an 710048, China)
  • Online:2025-07-22 Published:2025-07-22

摘要: 摘要:针对自然语言文本因果关系抽取中存在的标记方案无法处理重叠关系以及长距离依赖性的问题,本文引入tag2triplet算法来处理同一句子中的多个因果三元组和嵌入式因果关系的因果三元组,并将因果性标记方案与深度学习架构相结合用以最小化特征工程,同时有效地对因果关系建模。此外,本文将自注意力机制融合到Bert-BiGRU-CRF模型中以学习因果关系之间的长距离依赖性,允许信息在网络中自由流动,从而更准确地提取因果关系。为了验证该方法的有效性,将模型与目前广泛使用的BiLSTM-softmax模型、BiLSTM-CRF模型和Flair+CLSTM-BiLSTM-CRF模型在SemEval 2010 task8数据集上进行对比实验,结果表明,本文模型的F1评价指标分数更高,达到了83.44%。



关键词: 关键词:因果关系抽取, tag2triplet算法, Bert-BiGRU-CRF, 自注意力

Abstract: Abstract: To address the issues of overlapping relations and long-distance dependencies in causal relation extraction from natural language texts, this paper introduces the tag2triplet algorithm to handle multiple causal triplets within the same sentence and embedded causality. It combines causal labeling schemes with deep learning architectures to minimize feature engineering while effectively modeling causal relationships. Additionally, the paper integrates self-attention mechanisms into the Bert-BiGRU-CRF model to capture long-distance dependencies between causal relations, allowing information to flow freely within the network and thereby more accurately extracting causal relationships. To validate the effectiveness of this approach, the model is compared with the currently widely used BiLSTM-softmax model, BiLSTM-CRF model, and Flair + CLSTM-BiLSTM-CRF model  through experiments on the SemEval 2010 task8 dataset. The results demonstrate that the proposed model achieves a higher F1 score of 83.44%.

Key words: Key words: causal relationship extraction; tag2triplet algorithm; Bert-BiGRU-CRF; self-attention ,

中图分类号: