计算机与现代化 ›› 2024, Vol. 0 ›› Issue (11): 28-33.doi: 10.3969/j.issn.1006-2475.2024.11.005
摘要: 针对钢铁企业在采购管理方面计划周期性采购量不够合理,计划供应企业的生产需求不够精准等问题,提出一种基于改进布谷鸟搜索算法优化Elman神经网络(BASCS-Elman)的模型。以宝钢德盛公司物料生铁矿为研究对象,采用此模型对其需求量进行预测,以达到精准预测,减少资源浪费,提高企业利润的目的。本文通过Logistic混沌映射优化CS初始种群,从而保持种群多样性并能提高算法搜索遍历的均匀性;通过自适应Levy飞行更新布谷鸟位置,从而增加全局搜索能力;通过多阶段动态扰动策略帮助全局寻优;通过天牛须算法加快局部寻优速度。仿真实验结果表明,提出模型的平均绝对误差为1.5042,平均绝对百分比误差为0.33423%,最快稳定时间为1.18 s,优于其他预测模型。
中图分类号: