计算机与现代化 ›› 2024, Vol. 0 ›› Issue (06): 38-42.doi: 10.3969/j.issn.1006-2475.2024.06.007

• 算法设计与分析 • 上一篇    下一篇

基于LHS和正余弦搜索的阿基米德优化算法

  



  1. (深圳大学电子与信息工程学院,广东 深圳 518001)
  • 出版日期:2024-06-30 发布日期:2024-07-17
  • 作者简介: 作者简介:詹楷杰(1999—),男,广东揭阳人,硕士研究生,研究方向:资源调度,群智能优化算法,E-mail: 2110436075@email. szu.edu.cn; 通信作者:蔡茂国(1965—),男,广东深圳人,教授,博士,研究方向:图像处理,光纤通信,云转码,E-mail: caimg@szu.edu.cn; 洪广杰(1999—),男,江西吉安人,硕士研究生,研究方向:资源调度,群智能优化算法,E-mail: 2110436138@email.szu.edu.cn; 欧基发(1997—),男,广东阳江人,硕士研究生,研究方向:云转码,群智能优化算法,E-mail: 2110436153@email.szu.edu.cn。
  • 基金资助:
    广东省重点领域研发计划项目(2022B0101010002)

Archimedes Optimization Algorithm Based on LHS and Sine-cosine Search



  1. (College of Electronic and Information Engineering, Shenzhen University, Shenzhen 518001, China)
  • Online:2024-06-30 Published:2024-07-17

摘要:
摘要:针对阿基米德优化算法(AOA)寻优过程中存在兼顾全局探索和局部开发能力弱、寻优精度低、易陷入局部最优等问题,提出一种基于LHS和正余弦搜索算子的阿基米德优化算法(LSAOA)。首先,采用拉丁超立方抽样方法初始化种群,提高种群的均衡度和多样性;其次,改变全局搜索与局部搜索的切换模式,提高算法的收敛速度和精度;最后,引入正余弦搜索算子改进局部搜索方式,提高算法的局部搜索开发能力。仿真实验将LSAOA算法与其他改进AOA算法,以及其他元启发式算法在国际通用基准测试函数下进行寻优比较,实验结果表明,LSAOA算法在求解精度和收敛速度等方面具备较好的综合性能。
关键词:阿基米德优化算法; 拉丁超立方抽样; 正余弦搜索算子
     


关键词:

Abstract: Abstract:Aiming at the problems in the optimization process of Archimedes optimization algorithm (AOA), such as the weak ability of global exploration and local development, low optimization accuracy and easy to fall into local optimization, an Archimedes optimization algorithm based on LHS and sine-cosine search operator (LSAOA) is proposed. Firstly, Latin hypercube sampling method is used to initialize the population to improve the balance and diversity of the population; Secondly, the switching mode between global search and local search is changed to improve the convergence speed and accuracy of the algorithm; Finally, the sine-cosine search operator is introduced to improve the local search mode and improve the local search development ability of the algorithm. The simulation experiment compares lsaoa algorithm with other improved AOA algorithms and other meta heuristic algorithms under the international benchmark function. The experimental results show that lsaoa algorithm has better comprehensive performance in solving accuracy and convergence speed.

Key words: Key words: Archimedes optimization algorithm, Latin hypercube sampling, Sine-cosine search operator

中图分类号: