[1] |
YUN Y H, LI H D, DENG B C, et al. An overview of variable selection methods in multivariate analysis of near-infrared spectra[J]. TrAC Trends in Analytical Chemistry, 2019,113:102-115.
|
[2] |
KELIDARI M, HAMIDZADEH J. Feature selection by using chaotic cuckoo optimization algorithm with Levy flight, opposition-based learning and disruption operator[J]. Soft Computing, 2021,25(4):2911-2933.
|
[3] |
张东方,陈海燕,袁立罡. S2R2:基于相关性与冗余性分析的半监督特征选择[J]. 计算机与现代化, 2021(9):113-120.
|
[4] |
QI W L, TIAN Y L, LU D L, et al. Research progress of applying infrared spectroscopy technology for detection of toxic and harmful substances in food[J]. Foods, 2022,11(7). DOI: 10.3390/foods11070930.
|
[5] |
范恩,储珺,王璐. 月球表面多光谱数据最佳波段选择研究[J]. 计算机与现代化, 2009(4):39-43.
|
[6] |
ZHANG F K, DU K, GUO L Y, et al. Progress, problems, and potential of technology for measuring solution concentration in crystallization processes[J]. Measurement, 2022,187. DOI: 10.1016/j.measurement.2021.110328.
|
[7] |
刘泽蒙,张瑞,张广明,等. 基于离散萤火虫算法的近红外波长优选方法研究[J]. 光谱学与光谱分析, 2016,36(12):3931-3936.
|
[8] |
WANG Z X, HE Q P, WANG J. Comparison of variable selection methods for PLS-based soft sensor modeling[J]. Journal of Process Control, 2015,26:56-72.
|
[9] |
ZHANG P F, XU Z P, WANG Q, et al. A novel variable selection method based on combined moving window and intelligent optimization algorithm for variable selection in chemical modeling[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2021,246. DOI: 10.1016/j.saa.2020.118986.
|
[10] |
DESBOULETS L D D. A review on variable selection in regression analysis[J]. Econometrics, 2018,6(4). DOI: 10.3390/econometrics6040045.
|
[11] |
AL-KAF H A G, ALDUAIS N A M, SAAD A M H Y, et al. A bootstrapping soft shrinkage approach and interval random variables selection hybrid model for variable selection in near-infrared spectroscopy[J]. IEEE Access, 2020,8:168036-168052.
|
[12] |
HALIM Z, YOUSAF M N, WAQAS M, et al. An effective genetic algorithm-based feature selection method for intrusion detection systems[J]. Computers & Security, 2021,110. DOI: 10.1016/j.cose.2021.102448.
|
[13] |
LIN Y W, XIAO N, WANG L L, et al. Ordered homogeneity pursuit lasso for group variable selection with applications to spectroscopic data[J]. Chemometrics and Intelligent Laboratory Systems, 2017,168:62-71.
|
[14] |
LI H D, LIANG Y Z, XU Q S, et al. Key wavelengths screening using competitive adaptive reweighted sampling method for multivariate calibration[J]. Analytica Chimica Acta, 2009,648(1):77-84.
|
[15] |
YUN Y H, WANG W T, DENG B C, et al. Using variable combination population analysis for variable selection in multivariate calibration[J]. Analytica Chimica Acta, 2015,862:14-23.
|
[16] |
DENG B C, YUN Y H, CAO D S, et al. A bootstrapping soft shrinkage approach for variable selection in chemical modeling[J]. Analytica Chimica Acta, 2016,908:63-74.
|
[17] |
徐啟蕾,郭鲁钰,杜康,等. 基于迭代缩减窗口自助软收缩算法的近红外光谱变量选择方法研究[J]. 分析测试学报, 2022,41(8):1229-1241.
|
[18] |
WANG Y X, JIA Z H, YANG J. An variable selection method of the significance multivariate correlation competitive population analysis for near-infrared spectroscopy in chemical modeling[J]. IEEE Access, 2019,7:167195-167209.
|
[19] |
LI H D, LIANG Y Z, CAO D S, et al. Model-population analysis and its applications in chemical and biological modeling[J]. TrAC Trends in Analytical Chemistry, 2012,38:154-162.
|
[20] |
INDAHL U G. The geometry of PLS1 explained properly: 10 key notes on mathematical properties of and some alternative algorithmic approaches to PLS1 modelling[J]. Journal of Chemometrics, 2014,28(3):168-180.
|
[21] |
FU J S, YU H D, CHEN Z, et al. A review on hybrid strategy-based wavelength selection methods in analysis of near-infrared spectral data[J]. Infrared Physics & Technology, 2022,125. DOI: 10.1016/j.infrared.2022.104231.
|
[22] |
ANDERSSON M. A comparison of nine PLS1 algorithms[J]. Journal of Chemometrics, 2009,23(10):518-529.
|
[23] |
BJORCK A, INDAHL U G. Fast and stable partial least squares modelling: A benchmark study with theoretical comments[J]. Journal of Chemometrics, 2017,31(8). DOI: 10.1002/cem.2898.
|
[24] |
LINDGREN F, GELADI P, WOLD S. The kernel algorithm for PLS[J]. Journal of Chemometrics, 1993,7(1):45-59.
|
[25] |
RANNAR S, LINDGREN F, GELADI P, et al. A PLS kernel algorithm for data sets with many variables and fewer objects. Part 1: Theory and algorithm[J]. Journal of Chemometrics, 1994,8(2):111-125.
|
[26] |
WOLD S, SJOSTROM M, ERIKSSON L. PLS-regression: A basic tool of chemometrics[J]. Chemometrics and Intelligent Laboratory Systems, 2001,O 58(2):O 109-130.
|
[27] |
FABER N M, FERRE J. On the numerical stability of two widely used PLS algorithms[J]. Journal of Chemometrics, 2008,22(2):101-105.
|
[28] |
SARICAM S, BEYAZTAS U, ASIKGIL B, et al. On partial least-squares estimation in scalar-on-function regression models[J]. Journal of Chemometrics, 2022,36(12). DOI: 10.1002/cem.3452.
|