计算机与现代化 ›› 2023, Vol. 0 ›› Issue (12): 30-35.doi: 10.3969/j.issn.1006-2475.2023.12.006
摘要: 摘要:为了提高哈里斯鹰算法的寻优性能,提出KmHHO算法。首先,将所有种群看作一个聚类,用Kmeans算法计算聚类的质心,再用质心代替算法中的均值。然后,为了控制算法的探索和开发阶段,用指数递减的猎物逃逸能量,代替原算法中线性递减的猎物逃逸能量。最后,通过在23个benchmark函数上5个算法寻优性能的对比,验证KmHHO的改进效果,并利用Wilcoxon秩和检验,分析KmHHO与其他4个算法的差异性。实验结果表明,在23个benchmark函数中,KmHHO能够在14个benchmark函数上取得最优值,整体性能高于GWO、HHO和AO,但与DAHHO相当。
中图分类号: