计算机与现代化 ›› 2023, Vol. 0 ›› Issue (11): 75-81.doi: 10.3969/j.issn.1006-2475.2023.11.012

• 网络与通信 • 上一篇    下一篇

利用XGBoost的路由算法关键故障点识别方法#br# #br#

  

  1. (南京航空航天大学计算机科学与技术学院,江苏 南京 211106)
  • 出版日期:2023-11-29 发布日期:2023-11-29
  • 作者简介:李想(1998—),男,安徽滁州人,硕士研究生,研究方向:软件容错,E-mail: 17855031598@163.com; 通信作者:庄毅(1956—),女,江苏南京人,教授,博士生导师,研究方向:网络安全,可信计算,E-mail: zy16@nuaa.edu.cn。
  • 基金资助:
    国家自然科学基金资助项目(61572253)

Critical Fault Point Identification Method for Routing Algorithms Using XGBoost

  1. (College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China)
  • Online:2023-11-29 Published:2023-11-29

摘要: 摘要:单粒子效应下保证路由算法的可靠性尤为重要,针对穷举故障注入的方式识别程序关键故障点开销过大的问题,本文提出一种利用XGBoost的路由算法关键故障点识别方法。方法首先将单粒子效应导致的单位翻转映射到路由算法的程序指令中,并建立故障模型;然后利用该故障模型指导故障点特征向量的提取与构建,使用XGBoost算法训练故障点故障类型预测模型;最后根据模型预测结果识别出路由算法中的关键故障点。实验结果表明,与其他模型算法相比,本文提出的利用XGBoost的路由算法关键故障点识别方法有着较高的识别率,同时减少了穷举故障注入方式带来的开销。

关键词: 关键词:路由算法, 单粒子效应, 故障模型, XGBoost

Abstract: Abstract: It is particularly important to ensure the reliability of routing algorithms under the single event effects. To address the problem of excessive overhead in identifying program critical fault points by exhaustive fault injection, this paper proposes a critical fault point identification method for routing algorithms using XGBoost. The method firstly maps the unit flip caused by the single event effects into the program instructions of the routing algorithm and builds a fault model; then uses this fault model to guide the construction of the fault point feature vector and uses the XGBoost algorithm to train a fault point fault type prediction model; finally identifies the critical fault points in the routing algorithm based on the model prediction results. The experimental results show that, compared with other methods, the key fault point identification method of routing algorithm using XGBoost proposed in this paper has a higher identification rate and reduces the overhead caused by the exhaustive fault injection method.

Key words:  , Key words: routing algorithms; single event effects; fault models; XGBoost

中图分类号: