计算机与现代化 ›› 2023, Vol. 0 ›› Issue (08): 38-43.doi: 10.3969/j.issn.1006-2475.2023.08.007

• 人工智能 • 上一篇    下一篇

基于LSTM堆叠残差网络的岩相识别方法

  

  1. (东北石油大学电气信息工程学院,黑龙江 大庆 163318)
  • 出版日期:2023-08-30 发布日期:2023-09-13
  • 作者简介:曾丽丽(1980—),女,辽宁朝阳人,副教授,博士,研究方向:跨领域数据挖掘,E-mail: zll@nepu.edu.cn; 通信作者:汤华贝(1995—),男,安徽淮南人,硕士研究生,研究方向:深度学习,油气藏数据挖掘,E-mail: tanghuabeixx@163.com; 牛艺晓(1999—),女,山东临沂人,硕士研究生,研究方向:深度学习,油气藏数据挖掘,E-mail: 219644827@qq.com; 孟凡月(1996—),女,河北秦皇岛人,硕士研究生,研究方向:深度学习,油气藏数据挖掘,E-mail: 865211308@qq.com。
  • 基金资助:
    基金项目:河北省自然科学基金面上项目(D2022107001)

Lithofacies Identification Method Based on LSTM Stacked Residual Network

  1. (School of Electrical and Information Engineering, Northeast Petroleum University, Daqing 163318, China)
  • Online:2023-08-30 Published:2023-09-13

摘要: 摘要:为了提高岩相识别的准确性,本文开发一种基于残差连接长短期记忆网络的非均质储层岩相智能识别模型(LSTM_res)。首先,基于长短期记忆神经网络构建序列特征模块获取测井关键特征,该模块的多层叠加进一步增强了模型对关键特征信息的提取能力;其次,在序列特征模块的基础上引入残差连接技术,实现模型对网络不同层间特征信息的提取和融合,有效解决深度神经网络的退化问题;最后,以挪威附近北海浅海地区的测井数据为研究对象,通过测井参数敏感性分析选取6种测井参数(RMED 、RHOB、GR、NPHI、PEF和SP)实现储层岩相智能识别。实验结果表明,在同等条件下与LSTM、CNN_res和CNN模型相比,LSTM_res模型的岩相识别精度分别提高了2、4和6个百分点,为储层建模和地质研究提供了快速有效的数据支撑。

关键词: 关键词:长短期记忆神经网络, 残差连接, 岩相识别, 测井数据, 测井参数敏感性分析

Abstract: Abstract: In order to improve the accuracy of lithofacies identification, this paper developed a heterogeneous reservoir lithofacies intelligent identification model based on residual connection long short-term memory network (LSTM_res). Firstly, a sequence feature module is constructed based on long short-term memory neural network to obtain key logging features. The multi-layer stacking of this module further enhances the model’s ability to extract key feature information. Secondly, the residual connection technology is introduced on the basis of the sequence feature module to realize the extraction and fusion of the feature information between different layers of the network, which can effectively solve the degradation problem of the deep neural network. Finally, taking the logging data in the shallow sea area of the North Sea near Norway as the research object, six logging parameters (RMED, RHOB, GR, NPHI, PEF and SP) are selected through sensitivity analysis of logging parameters to realize intelligent identification of reservoir lithofacies. Compared with LSTM, CNN_res and CNN models under the same conditions, the experimental results show that the lithofacies identification accuracy of LSTM_res model is improved by 2, 4 and 6 porcentage points, respectively. It provides fast and effective data support for reservoir modeling and geological research.

Key words: Key words: long short-term memory neural network, residual connection, lithofacies identification, logging data, sensitivity analysis of logging parameters

中图分类号: