[1] 王耀东,余祖俊,白彪,等. 基于图像处理的地铁隧道裂缝识别算法研究[J]. 仪器仪表学报, 2014,35(7):1489-1496.
[2] 徐志刚,赵祥模,宋焕生,等. 基于直方图估计和形状分析的沥青路面裂缝识别算法[J]. 仪器仪表学报, 2010,31(10):2260-2266.
[3] DUNG C V, ANH L D. Autonomous concrete crack detection using deep fully convolutional neural network[J]. Automation in Construction, 2019,99:52-58.
[4] PROTOPAPADAKIS E, VOULODIMOS A, DOULAMIS A, et al. Automatic crack detection for tunnel inspection using deep learning and heuristic image post-processing[J]. Applied Intelligence, 2019,49(7):2793-2806.
[5] KIM B, CHO S. Automated vision-based detection of cracks on concrete surfaces using a deep learning technique[J]. Sensors, 2018,18(10), DOI: 10.3390/s18103452.
[6] ZHANG A, WANG K C P, FEI Y, et al. Deep learning-based fully automated pavement crack detection on 3D asphalt surfaces with an improved crackNet[J]. Journal of Computing in Civil Engineering, 2018,32(5), DOI: 10.1061/(ASCE)CP.1943-5487.0000775.
[7] ISLAM M, SOHAIB M, KIM J, et al. Crack classification of a pressure vessel using feature selection and deep learning methods[J]. Sensors, 2018,18(12), DOI: 10.3390/s18124379.
[8] DUNG C V, SEKIYA H, HIRANO S, et al. A vision-based method for crack detection in gusset plate welded joints of steel bridges using deep convolutional neural networks[J]. Automation in Construction, 2019,102:217-229.
[9] 李良福,马卫飞,李丽,等. 基于深度学习的桥梁裂缝检测算法研究[J]. 自动化学报, 2019,45(9):1727-1742.
[10]NI F T, ZHANG J, CHEN Z Q. Pixel-level crack delineation in images with convolutional feature fusion[J]. Structural Control and Health Monitoring, 2019,26(1): e2286.1-e2286.18.
[11]GOODFELLOW I, BENGIO Y, COURVILLE A. Deep Learning[M]. Cambridge, Boston, Ma: MIT Press, 2016:8-12.
[12]郑远攀,李广阳,李晔. 深度学习在图像识别中的应用研究综述[J]. 计算机工程与应用, 2019,55(12):20-36.
[13]SHAO L, WU D, LI X L. Learning deep and wide: A spectral method for learning deep networks[J]. IEEE Transactions on Neural Networks and Learning Systems, 2014,25(12):2303-2308.
[14]赵珊珊,何宁. 基于卷积神经网络的路面裂缝检测[J]. 传感器与微系统, 2017,36(11):135-138.
[15]侯一民,李永平. 基于卷积神经网络的孤立词语音识别[J]. 计算机工程与设计, 2019,40(6):1751-1756.
[16]ABADI M, AGARWAL A, BARHAM P, et al. TensorFlow: Large-scale machine learning on heterogeneous distributed systems[J]. arXiv preprint arXiv:1603.04467, 2016.
[17]ABADI M, BARHAM P, CHEN J, et al. TensorFlow: A system for large-scale machine learning[C]// Proceedings of the 12th USENIX Symposium on Operating Systems Design and Implementation. 2016:265-283.
[18]杨华,付金华,袁效奇. 鄂尔多斯盆地南缘地质剖面图集[M]. 北京:石油工业出版社, 2016:35-86.
[19]李佳田,牛一如,贾成林,等. RME:基于滑动窗口的实时人脸检测算法[J]. 高技术通讯, 2016,26(S1):719-725.
[20]刘超,张晓晖,胡清平. 超低照度下微光图像增强神经网络损失函数设计分析[J]. 国防科技大学学报, 2018,40(4):67-73.
[21]王红霞,周家奇,辜承昊,等. 用于图像分类的卷积神经网络中激活函数的设计[J]. 浙江大学学报(工学版), 2019,53(7):1363-1373.
[22]白彪. 地铁隧道表面图像裂缝识别算法研究[D]. 北京:北京交通大学, 2015.
[23]张采芳,田岩,李江. 基于几何特征分析的路面裂缝分类算法研究[J]. 红外与激光工程, 2015,44(4):1359-1364. |