[1] 陈肇雄,高庆狮. 自然语言处理[J]. 计算机研究与发展, 1989,11(2):1-16.
[2] 杨东,王移芝. 基于Attention-based C-GRU神经网络的文本分类[J]. 计算机与现代化, 2018(2):96-100.
[3] 冯兴杰,张志伟,史金钏. 基于卷积神经网络和注意力模型的文本情感分析[J]. 计算机应用研究, 2018,35(5):1434-1436.
[4] XU K, KIROS R, BENGIO Y, et al. Show, attend and tell: Neural image caption generation with visual attention[J]. Computer Science, 2005,37:2048-2057.
[5] 卢玲,杨武,王远伦,等. 结合注意力机制的长文本分类方法[J]. 计算机应用, 2018,38(5):1272-1277.
[6] MAO J H, XU W, WANG J, et al. Deep caption with multimodal recurrent neural networks (M-RNN)[C]// International Conference on Learning Representations. 2015:1-17.
[7] LIANG Y, HU H F. TVPRNN for image caption generation[J]. Electronics Letters, 2017,53(22):1471-1473.
[8] DONG J F, LI X R, SNOEK C G M. Predicting visual features from text for image and video caption retrieval[J]. IEEE Transactions on Multimedia, 2018,20(12):3377-3388.
[9] VINYALS O, TOSHEV A, BENGIO S, et al. Show and tell: A neural image caption generator[C]// 2015 IEEE Conference on Computer Vision and Pattern Recognition. 2015:770-778.
[10]GODIN F, DEGRAVE J, DAMBRE J, et al. Dual rectified linear units(DReLUs): A replacement for tanh activation functions in quasi-recurrent neural networks[J]. Pattern Recognition Letters, 2018,116(12):8-14.
[11]HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997,9(8):1735-1780.
[12]黄毅,段修生,孙世宇. 基于改进sigmoid激活函数的深度神经网络训练算法研究[J]. 计算机测量与控制, 2017,25(2):132-135.
[13]刘海龙,李宝安,吕学强,等. 基于深度卷积神经网络的图像检索算法研究[J]. 计算机应用研究, 2017,4(12):302-305.
[14]苏军雄,见雪婷,刘玮,等. 基于可变形卷积神经网络的手势识别方法[J]. 计算机与现代化, 2018(4):62-67.
[15]SIMONYAN K, ZISSERMAN A.Very deep convolutional networks for large-scale image recognition[J]. Computer Vision and Pattern Recognition, 2015:arXiv:1409.1556.
[16]HE K M, SUN J, REN S Q, et al. Deep residual learning for image recognition[C]// Conference on Computer Vision and Pattern Recognition. 2016:770-778.
[17]ZHANG M X, YANG Y, ZHANG H W, et al. More is better: Precise and detailed image captioning using online positive recall and missing concepts mining[J]. IEEE Transactions on Image Processing, 2019,28(1):32-44.
[18]杨观赐,杨静,李少波. 基于Dropout与ADAM优化器的改进CNN算法[J]. 华中科技大学学报(自然科学版), 2018,6(427):127-132.
[19]SRIVASTAVA N, HINTON G, KRIZHEVSKY A, et al. Dropout: A simple way to prevent neural networks from over fitting[J]. Journal of Machine Learning Research, 2014,15(1):1929-1958.
[20]KISHORE P, SALIM R, TODD W, et al. BLEU: A method for automatic evaluation of machine translation[C]// Proceedings of the 40th Annual Meeting on Association of Computational Linguistics. 2002:311-318. |