计算机与现代化

• 图像处理 • 上一篇    下一篇

基于改进LeNet-5的面部表情识别方法

  

  1. (长春工业大学计算机科学与工程学院,吉林长春130012)
  • 收稿日期:2019-03-28 出版日期:2019-10-28 发布日期:2019-10-29
  • 作者简介:张啸(1993-),男,安徽宿州人,硕士研究生,研究方向:图像处理,E-mail: 1401198005@qq.com; 周连喆(1971-),副教授,硕士生导师,硕士,研究方向:人工智能与数据挖掘; 张琳琳(1986-),女,硕士研究生,研究方向:图像处理。
  • 基金资助:
    吉林省科技厅重大科技招标专项(20160203010GX)

Facial Expression Recognition Method Based on Improved LeNet-5

  1. (School of Computer Science and Engineering, Changchun University of Technology, Changchun 130012, China)
  • Received:2019-03-28 Online:2019-10-28 Published:2019-10-29

摘要: 针对现有面部表情识别算法耗时长、收敛速度慢、分类精度低等问题,对LeNet-5网络的框架和内部结构进行双重优化和改进,并提出一种基于改进LeNet-5的面部表情识别方法。为了能够提取更加多样化的特征,同时提升特征表达能力,首先增加卷积层和池化层的个数,调整网络内部参数;其次,通过对卷积层、全连接层进行批规范化处理,提高网络模型的泛化能力;最后,3个池化层以maxpool_avgpool_avgpool的组合方式进行重叠池化。在FER2013人脸表情数据库进行实验,结果表明改进后的模型相较于目前的算法具有更高的识别精度。

关键词: 卷积神经网络, 人脸表情识别, 批规范化, 全连接

Abstract: Aiming at the problems of the existing facial expression recognition algorithms, such as long time, slow convergence speed and low classification accuracy, the framework and internal structure of LeNet-5 network are optimized and improved, and a facial expression recognition method based on improved LeNet-5 is proposed. In order to extract more diverse features and improve the ability of feature expression, firstly, the number of convolution layer and pooling layer is increased to adjust the internal parameters of the network; secondly, the generalization ability of the network model is improved by batch normalization of convolution layer and full connection layer; finally, the three pooling layers are overlapped and pooled by the combination of maxpool_avgpool_avgpool. Experiments on FER2013 face expression database show that the improved model has higher recognition accuracy than the current algorithm.

Key words:  convolutional neural network, facial expression recognition, batch normalization, fully connected

中图分类号: