[1] Schapire R E, Singer Y. Boostexter: A boosting-based system for text categorization[J]. Machine Learning, 2000,39(2/3):135-168.
[2] Ueda N, Saito K. Parametric mixture models for multi-labeled text[C]// Proceedings of the 10th International Conference on Neural Information Processing. 2003:721-728.
[3] Gao Sheng, Wu Wen, Lee C H, et al. An MFoM learning approach to robust multiclass multi-label text categorization[C]// Proceedings of the 21st International Conference on Machine Learning. 2004:329-336.
[4] Boutell M R, Luo Jiebo, Shen Xipeng, et al. Learning multi-label scene classification[J]. Pattern Recognition, 2004,37(9):1757-1771.
[5] Sanden C, Zhang J Z. Enhancing multi-label music genre classification through ensemble techniques[C]// Proceeding of the 34th International ACM SIGIR Conference on Research and Development in Information Retrieval. 2011:705-714.
[6] Wieczorkowska A, Synak P, Ra〖KG-*4〗〖JX-+0.5mm〗〖XCs.tif〗〖JX+0.5mm〗 Z W. Multi-label classification of emotions in music[C]// Proceedings of the 16th International Conference on Intelligent Information Processing and Web Mining. 2006:307-315.
[7] Wang Mei, Zhou Xiangdong, Chua Tat-Seng. Automatic image annotation via local multi-label classification[C]// Proceedings of the 2008 International Conference on Content-based Image and Video Retrieval. 2008:17-26.
[8] Kazawa H, Izumitani T, Taira H, et al. Maximal margin labeling for multi-topic text categorization[C]// Proceedings of the Advances in Neural Information Processing Systems 17. 2004:649-656.
[9] Tang Lei, Rajan S, Narayanan V K. Large scale multi-label classification via metalabeler[C]// Proceedings of the 18th International Conference on World Wide Web. 2009:211-220.
[10]Rak R, Kurgan L, Reformat M. Multi-label associative classification of medical documents from MEDLINE[C]// Proceedings of the 4th International Conference on Machine Learning and Applications. 2005:177-186.
[11]Thabtah F A, Cowling P, Peng Yonghong. MMAC: A new multi-class, multi-label associative classification approach[C]// Proceedings of the 4th IEEE International Conference on Data Mining. 2004:217-224.
[12]Sangsuriyun S, Marukatat S, Waiyamai K. Hierarchical multi-label associative classification(HMAC) using negative rules [C]// Proceedings of the 9th IEEE International Conference on Cognitive Informatics. 2010:919-924.
[13]Gopal S, Yang Yi-ming. Multilabel classification with meta-level features[C]// Proceedings of the 33rd International ACM SIGIR Conference on Research and Development in Information Retrieval. 2010:315-322.
[14]Read J, Puurula A, Bifet A. Multi-label classification with meta-labels[C]// Proceedings of the 14th IEEE International Conference on Data Mining. 2014:941-946.
[15]Zhu Sheng-huo, Ji Xiang, Xu Wei, et al. Multi-labelled classification using maximum entropy method[C]// Proceedings of the 28th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. 2005:274-281.
[16]Clare A, King R. Knowledge discovery in multi-label phenotype data[C]// Proceedings of the 5th European Conference on Principles of Data Mining and Knowledge Discovery. 2001:42-53.
[17]Zhang Min-ling, Zhou Zhi-hua. Multilabel neural networks with applications to functional genomics and text categorization[J]. IEEE Transactions on Knowledge and Data Engineering, 2006,18(10):1338-1351.
[18]Kordmahalleh M M, Homaifar A, Dukka B K C. Hierarchical multi-label gene function prediction using adaptive mutation in crowding niching [C]// Proceedings of the 13th International Conference on Bioinformatics and Bioengineering. 2013:1-6.
[19]Fabris F, Freitas A A. Dependency network methods for hierarchical multi-label classification of gene functions[C]// Proceedings of the 2014 IEEE Symposium on Computational Intelligence and Data Mining. 2014:241-248.
[20]Song Yang, Zhang Lu, Giles L C. A sparse Gaussian processes classification framework for fast tag suggestions[C]// Proceedings of the 17th ACM Conference on Information and Knowledge Management. 2008:93-102.
[21]Xia Xin, Lo David, Wang Xin-yu, et al. Tag recommendation in software information sites[C]// Proceedings of the 10th IEEE Working Conference on Mining Software Repositories. 2013:287-296.
[22]Maimon O, Rokach L. Data Mining and Knowledge Discovery Handbook[M]. 2nd ed. Berlin: Springer, 2010:667-685.
[23]Zhang Min-ling, Zhang Kun. Multi-label learning by exploiting label dependency[C]// Proceedings of 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2010:999-1008.
[24]Tsoumakas G, Vlahavas I. Random k-labelsets: An ensemble method for multilabel classification[C]// Proceedings of the 18th European Conference on Machine Learning. 2007:406-417.
[25]Ghamrawi I N, McCallum A. Collective multi-label classification[C]// Proceedings of the 14th ACM International Conference on Information and Knowledge Management. 2005:195-200.
[26]Godbole S, Sarawagi S. Discriminative methods for multi-labelled classification[C]// Proceedings of the 8th Pacific-Asia Conference on Knowledge Discovery and Data Mining. 2004:22-30.
[27]Hüllermeier E, Fürnkranz J, Cheng Wei-wei, et al. Label ranking by learning pairwise preferences[J]. Artificial Intelligence, 2008,172(16-17):1897-1916.
[28]Fürnkranz J, Hüllermeier E, Mencía L E, et al. Multilabel classification via calibrated label ranking[J]. Machine Learning, 2008,73(2):133-153.
[29]Read J, Pfahringer B, Holmes G, et al. Classifier chains for multi-label classification[C]// Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases: Part II. 2009,5782:254-269.
[30]Read J. A pruned problem transformation method for multi-label classification[C]// Proceedings of the New Zealand Computer Science Research Student Conference. 2008:143-150.
[31]Zhang Min-ling, Zhou Zhi-hua. ML-KNN: A lazy learning approach to multi-label learning [J]. Pattern Recognition, 2007,40(7):2038-2048.〖HJ1.6mm〗
[32]Simoudis E, Aha D W. Special AI review issue on lazy learning[J]. Artificial Intelligence Review, 1997,11(1-5):7-10.
[33]Luo Xiao, Zincir-Heywood A N. Evaluation of two systems on multi-class multi-label document classification[C]// Proceedings of 15th International Symposium on Methodologies for Intelligent System. 2005:161-169.
[34]Xu Jian-hua. Multi-label weighted k-nearest neighbor classifier with adaptive weight estimation[C]// Proceedings of the 18th International Conference on Neural Information Processing. 2011:79-88.
[35]张敏灵. 一种新型多标记懒惰学习算法[J]. 计算机研究与发展, 2012,49(11):2271-2282.
[36]程圣军,黄庆成,刘家锋,等. 一种改进的ML-KNN多标记文档分类方法[J]. 哈尔滨工业大学学报, 2013,45(11):45-49.
[37]De Comité F, Gilleron R, Tommasi M. Learning multi-label alternating decision tree from texts and data[C]// Proceedings of the 3rd International Conference on Machine Learning and Data Mining in Pattern Recognition. 2003:35-49.
[38]Borges H B, Nievola J C. Multi-label hierarchical classification using a competitive neural network for protein function prediction [C]// Proceedings of the 2012 International Joint Conference on Neural Networks. 2012:1-8.
[39]Kongsorot Y, Horata P. Multi-label classification with extreme learning machine[C]// Proceedings of the 6th International Joint Conference on Knowledge and Smart Technology. 2014:81-86.
[40]Chen Ben-hui, Duan Li-hua, Hu Jing-lu. Composite kernel based SVM for hierarchical multi-label gene function classification[C]// Proceedings of the 2012 International Joint Conference on Neural Networks. 2012:1-6.
[41]Wan Shi-biao, Mak Man-wai, Kung Sun-yuan. Adaptive thresholding for multi-label SVM classification with application to protein subcellular localization prediction[C]// Proceedings of the 2013 IEEE International Conference on Acoustics, Speech and Signal Processing. 2013:3457-3551.
[42]孔祥南,黎铭,姜远,等. 一种针对弱标记的直推式多标记分类方法[J]. 计算机研究与发展, 2010,47(8):1392-1399.
[43]田枫,沈旭昆. 弱标签环境下基于语义邻域学习的图像标注[J]. 计算机研究与发展, 2014,51(8):1821-1832.
[44]Sun Yu-yin, Zhang Yin, Zhou Zhi-hua. Multi-label learning with weak label[C]// Proceedings of the 24th AAAI Conference on Artificial Intelligence. 2010:593-598.
[45]Chen Gang, Song Yangqiu, Wang Fei, et al. Semi-supervised multi-label learning by solving a Sylvester equation[C]// Proceedings of the 8th SIAM International Conference on Data Mining. 2008:410-419.
[46]〖JP2〗Zhang Chen-guang, Zhang Xia-huan. Graph-based semi-supervised multi-label learning method[C]// Proceedings of the 2013 International Conference on Mechatronic Sciences, Electric Engineering and Computer. 2013:1021-1025.
[47]Wang Hua, Huang Heng, Ding C. Image annotation using multi-label correlated Green’s function[C]// Proceedings of the 12th IEEE International Conference on Computer Vision. 2009:2029-2034.
[48]Kong Xiang-nan, Michael K N, Zhou Zhi-hua. Transductive multilabel learning via label set propagation[J]. IEEE Transactions on Knowledge and Data Engineering, 2013,25(3):704-719.
[49]Liu Yi, Jin Rong, Yang Liu. Semi-supervised multi-label learning by constrained non-negative matrix factorization[C]// Proceedings of the 21st AAAI Conference on Artificial Intelligence. 2006:421-426.
[50]Esuli A, Sebastiani F. Active learning strategies for multi-label text classification[C]// Proceedings of the 31st European Conference on IR Research on Advances in Information Retrieval. 2007:102-113.
[51]Wu Jian, Sheng V S, Zhang Jing, et al. Multi-label active learning for image classification[C]// Proceedings of the 2014 IEEE International Conference on Image Processing. 2014:5227-5231.
[52]Yu Kai, Yu Shi-peng, Tresp V. Multi-label informed latent semantic indexing[C]// Proceedings of the 28th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. 2005:258-265.
[53]Wang Hua, Ding C, Huang Heng. Multi-label linear discriminant analysis[C]// Proceedings of the 11th European Conference on Computer Vision: Part VI. 2010:126-139.
[54]Park C H, Lee M. On applying linear discriminant analysis for multi-labeled problems[J]. Pattern Recognition Letters, 2008,29(7):878-887.
[55]Doquire G, Verleysen M. Feature selection for multi-label classification problems[C]// Proceedings of the 11th International Work-Conference on Artificial Neural Networks. 2011:9-16.
[56]Jungjit S, Freitas A A, Michaelis M, et al. Two extensions to multi-label correlation-based feature selection: A case study in bioinformatics[C]// Proceedings of the 2013 IEEE International Conference on Systems, Man, and Cybernetics. 2013:1519-1524.
[57]Zhang Yin, Zhou Zhi-hua. Multilabel dimensionality reduction via dependence maximization[J]. ACM Transactions on Knowledge Discovery from Data, 2010,4(3):Article No.14.
[58]〖JP2〗Gu Quan-quan, Li Zhen-hui, Han Jia-wei. Correlated multi-label feature selection[C]// Proceedings of the 20th ACM International Conference on Information and Knowledge Management. 2011:1087-1096.
[59]Ji Shui-wang, Ye Jie-ping. Linear dimensionality reduction for multi-label classification[C]// Proceedings of the 21st International Joint Conference on Artificial Intelligence. 2010:1077-1082.
|