[1] Jeffrey Dean, Sanjay Ghemawat. MapReduce: Simplied data processing on large clusters[C]// Operating Systems Design and Implementation, San Francisco, 2004. 2004:137-150.
[2] The Apache Software Foundation. Hadoop[EB/OL]. http://hadoop.apache.org, 2014-12-20.
[3] Ma Lili, Liao Huaming, He Yongqiang, et al. A switch criteria for hybrid datasets merging on Top of MapReduce[C]// Proceedings of the 8th International Conference on Grid and Cooperative Computing, 2009. 2009:293-298.
[4] The Apache Software Foundation. Hive[EB/OL]. http://hive.apache.org/, 2014-12-20.
[5] Olston C, Reed B, Srivastava U, et al. Pig latin:A NotSoForeign-language for data processing[C]// SIGMOD,2008. 2008:1099-1110.
[6] Zaharia M, Konwinski A, Joseph A D, et al. Improving MapReduce performance in heterogeneous environments[C]// SIGMOD, 2012. 2012:29-42.
[7] Pavlo A, Paulson E, Rasin A, et al. A comparsion of approaches to largescale data analysis[C]// SIGMOD, 2009. 2009:165-178.
[8] Taniar D, Leung C H C, Rahayu W, et al. HighPerformance Parallel Database Processing and Grid Databases[M]. John Wiley & Sons, Inc., 2008.
[9] Yang H, Dasdan A, Hsiao R L,et al. Map-Reduce-Merge: Simplified relational data processing on large clusters[C]// SIGMOD,2007. 2007:1029-1040.
[10]Vernica R, Carey M J, Li C. Efficient parallel set-similarity joins using MapReduce[C]// New SIGMOD, 2010. 2010:495-506.
[11]The Apache Software Foundation. Apache Hadoop Main2.6.0 API[EB/OL]. http://hadoop.apache.org/docs/current/api/, 2014-12-30.
[12]Isard M, Budiu M, Yu Y, et al. Dryad: Distributed dataparallel programs form sequential building blocks[C]// Proceedings of the 2007 Eurosys Conference. 2007:59-72.
[13]Jiang D, Tung A K H, Chen G. Map-join-reduce: Toward scalable and efficient data analysis on large clusters[J]. IEEE Transactions on Knowledge and Data Engineering, 2011,23(9):12991311.
[14]Afrati F, Ullman J D. Optimizing joins in a MapReduce environment[C]// Proceedings of the 13th International Conference on Extending Database Technology. 2010:99-110.
[15]Lin Y T, Agrawal D, Chen C, et al. Llama: Leveraging columnar storage for scalable join processing in the Map Reduce framework[C]// The 31th SIGMOD. 2011:961-972.
[16]Xu Y, Kostamaa P, Zhou X, et al. Handing data skew in parallel joins in shared-nothing systems[C]// Proceedings of the ACM SIGMOD International Conference on Management of Data, 2008. 2008:1043-1052.
[17]Okcan A, Riedewald M. Processing thetajoins using MapReduce[C]// Proceedings of the ACM SIGMOD International Conference on Management of Data. 2011,949-960.
[18]Blanas S, Patel J M, Ercegovac V, et al. A comparsion of join algorithms for log processing in MapReduce[C]// Proceedings of the ACM SIGMOD International Conference on Management of Data, 2010. 2010:975-986.
|