Insulator Defect Detection Based on Complex Environment
(1. School of Electric Power Engineering, Nanjing University of Engineering, Nanjing 211100, China; 2. School of Computer Engineering, Nanjing University of Engineering, Nanjing 211100, China)
JI Xingyu1, HUANG Chenrong2, YAO Juncai2, WANG Kai1, GU Mingjie1. Insulator Defect Detection Based on Complex Environment[J]. Computer and Modernization, 2025, 0(09): 67-72.
[1] JENSSEN R, ROVERSO D. Automatic autonomous vision-based power line inspection: A review of current status and the potential role of deep learning[J]. International Journal of Electrical Power and Energy Systems, 2018,99(2):107-120.
[2] 何宁辉,王世杰,刘军福,等. 基于深度学习的航拍图像绝缘子缺失检测方法研究[J]. 电力系统保护与控制, 2021,49(12):132-140.
[3] SONG Y H, ZHOU Z Z, LI Q, et al. Intrusion detection of foreign objects in high-voltage lines based on YOLOv4[C]// 2021 IEEE 6th International Conference of Intelligent Computing and Signal Process. IEEE, 2021:1295-1300.
[4] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 2016:770-778.
[5] WANG C Y, BOCHKOVSKIY A, LIAO H Y. Scaled-YOLOv4: Scaling cross stage partial network[C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. IEEE, 2021:13029-13038.
[6] 汝承印,张仕海,张子淼,等. 基于轻量级MobileNet-SSD和MobileNetV2-DeeplabV3+的绝缘子故障识别方法[J]. 高电压技术, 2022,48(9):3670-3679.
[7] 王卓,王玉静,王庆岩,等. 基于协同深度学习的二阶段绝缘子故障检测方法[J]. 电工技术学报, 2021,36(17):3594-3604.
[8] HAN G, ZHAO L, LI Q, et al. A lightweight algorithm for insulator target detection and defect identification[J]. Sensors, 2023,23(3):1216-1231.
[9] YU J, LIU K, HE M, et al. Insulator defect detection: A detection method of target search and cascade recognition[J]. Energy Reports, 2021,7(7):206-217.
[10] JIA W, XU S Q, LIANG Z, et al. Real-time automatic helmet detection of motorcyclists in urban traffic using improved YOLOv5 detector[J]. IET Image Processing, 2021,15(14):3623-3637.
[11] 何锦强,李锐海,李昊,等. 基于YOLOv5与Grabcut的架空线路绝缘子可见光图像自动识别与分割方法[J]. 南方电网技术, 2023,17(6):128-135.
[12] WANG S X, ZHU J D, Ll Z T, et al. Coal gangue target detection based on improved YOLOv5s[J]. Applied sciences, 2023,13(20):112-120.
[13] 朱晓彤,张荣芬,刘宇红,等. Dim-YOLOv5n昏暗场景目标检测算法[J]. 计算机工程与应用, 2024,60(11):173-181.
[14] 裴少通,张善驰. 基于改进YOLOv5s的架空输电线路鸟类入侵检测方法[J]. 智慧电力, 2023,51(6):100-105.
[15] TIAN Z, SHEN C H, CHEN H, et al. Fcos: Fully convolutional one-stage object detection[C]// Proceedings of the IEEE/CVF International Conference on Computer Vision. IEEE, 2019:627-636.
[16] QIU Z B, ZHU X, LIAO C B, et al. Detection of transmission line insulator defects based on an improved lightweight YOLOv4 model[J]. Applied Sciences, 2022,12(3):1207-1211.
[17] SUN Y, SONG J, LI Y, et al. lVP-YOLOv5: An intelligent vehicle-pedestrian detection method based on YOLOv5s[J]. Connection Science, 2023,35(1):2121-2131.
[18] TAO C Y, ZHANG J, WANG P. Smoke detection based on deep convolutional neural networks[C]// 2016 International Conference on Industrial Informatics Computing Technology. IEEE, 2016:150-153.
[19] 郑含博,胡思佳,梁炎燊,等. 基于YOLO-2MCS的输电线路走廊隐患目标检测方法[J]. 电工技术学报, 2024,39(13):4164-4175.
[20] MADUAKO I, IGWE C, ABAH J, et al. Deep learning for component fault detection in electricity transmission lines[J]. Journal of Big Data, 2022,9(1):1-34.
[21] HUANG Z R, HU S L, ZHANG L. Fault detection of insulator in distribution network based on YOLOv5s neural network[C]// 2022 International Conference on Artificial Intelligence and Computer Information Technology(AlCIT). IEEE, 2022: 1-5.
[22] LIU C Y, WU Y Q, LlU J J, et al. Improved YOLOv3 network for insulator detection in aerial images with diverse background interference[J]. Electronics, 2021,10(7):771-786.
[23] 吴明杰,云利军,陈载清,等. 改进YOLOv5s的无人机视角下小目标检测算法[J]. 计算机工程与应用, 2024,60(2):191-199.
[24] 刘敏,周国亮,王红旭,等. 基于稀疏重构注意力机制的绝缘子缺陷检测方法[J]. 广东电力, 2024,37(5):104-111.
[25] 伍箴燎,吴正平,孙水发. 基于改进YOLOv5算法的绝缘子多缺陷检测[J]. 高压电器, 2022,11(2):1-11.
[26] 王年涛,王淑青,黄剑锋,等. 基于改进YOLOv5神经网络的绝缘子缺陷检测方法[J]. 激光杂志, 2022,43(8):60-65.
[27] 孙新娟,杨天宇. 融合注意力机制的改进型YOLOv5绝缘子缺陷故障检测方法[J]. 科学技术与工程, 2024,24(17):7221-7230.