[1] SHI W Z, CABALLERO J, LEDIG C, et al. Cardiac image super-resolution with global correspondence using multi-atlas patchmatch[C]// Proceedings of the 2013 16th International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer, 2013:9-16.
[2] CHEN L, LIU H, YANG M H, et al. Remote sensing image super-resolution via residual aggregation and split attentional fusion network[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021,14:9546-9556.
[3] 邓焱文. 基于深度学习的超分辨率重建在人脸识别中的应用[D]. 长沙:湖南大学, 2019.
[4] WANG B, LU T, ZHANG Y D. Feature-driven super-resolution for object detection[C]// Proceedings of the 2020 5th International Conference on Control, Robotics and Cybernetics (CRC). IEEE, 2020:211-215.
[5] KEYS R. Cubic convolution interpolation for digital image processing[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1981,29(6):1153-1160.
[6] DONG W S, ZHANG L, SHI G M, et al. Image deblurring and super-resolution by adaptive sparse domain selection and adaptive regularization[J]. IEEE Transactions on Image Processing, 2011,20(7):1838-1857.
[7] HUANG Y F, LI J, GAO X B, et al. Single image super-resolution via multiple mixture prior models[J]. IEEE Transactions on Image Processing, 2018,27(12):5904-5917.
[8] DONG C, LOY C C, HE K M, et al. Image super-resolution using deep convolutional networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016,38(2):295-307.
[9] LIM B, SON S, KIM H, et al. Enhanced deep residual networks for single image super-resolution[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). IEEE, 2017:1132-1140.
[10] KIM J, LEE J K, LEE K M. Accurate image super-resolution using very deep convolutional networks[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2016:1646-1654.
[11] KIM J, LEE J K, LEE K M. Deeply-recursive convolutional network for image super-resolution[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2016:1637-1645.
[12] ZHANG Y L, TIAN Y P, KONG Y, et al. Residual dense network for image super-resolution[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2018:2472-2481.
[13] DONG C, LOY C C, TANG X O. Accelerating the super-resolution convolutional neural network[C]// Proceedings of the 2016 14th European Conference on Computer Vision (ECCV). Springer, 2016:391-407.
[14] SHI W Z, CABALLERO J, HUSZAR F, et al. Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2016:1874-1883.
[15] LAI W S, HUANG J B, AHUJA N, et al. Fast and accurate image super-resolution with deep Laplacian pyramid networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019,41(11):2599-2613.
[16] ZHANG Y L, LI K P, LI K, et al. Image super-resolution using very deep residual channel attention networks[C]// Proceedings of the 2018 15th European Conference on Computer Vision (ECCV). Springer, 2018:294-310.
[17] DAI T, CAI J R, ZHANG Y B, et al. Second-order attention network for single image super-resolution[C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2019:11057-11066.
[18] ZHAO H Y, KONG X T, HE J W, et al. Efficient image super-resolution using pixel attention[C]// Proceedings of the 2020 European Conference on Computer Vision (ECCV). Springer, 2020:56-72.
[19] LIANG J Y, CAO J Z, SUN G L, et al. SwinIR: Image restoration using swin transformer[C]// Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW). IEEE, 2021:1833-1844.
[20] WANG Y, LI Y S, WANG G, et al. Multi-scale attention network for single image super-resolution[J]. arXiv preprint arXiv:2209.14145, 2022.
[21] YUE Z S, ZHAO Q, XIE J W, et al. Blind image super-resolution with elaborate degradation modeling on noise and kernel[C]// Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2022:2118-2128.
[22] CHEN X Y, WANG X T, ZHOU J T, et al. Activating more pixels in image super-resolution transformer[C]// Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2023:22367-22377.
[23] KONG X T, LIU X N, GU J J, et al. Reflash dropout in image super-resolution[C]// Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2022:5992-6002.
[24] WANG Z H, CHEN J, HOI S C H. Deep learning for image super-resolution: A survey[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021,43(10):3365-3387.
[25] AGUSTSSON E, TIMOFTE R. NTIRE 2017 challenge on single image super-resolution: Dataset and study[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (VPRW). IEEE, 2017:1122-1131.
[26] BEVILACQUA M, ROUMY A, GUILLEMOT C, et al. Low-complexity single-image super-resolution based on nonnegative neighbor embedding[C]// Proceedings of the 23rd British Machine Vision Conference (BMVC). BMVA Press, 2012. DOI: 10.5244/C.26.135.
[27] ZEYDE R, ELAD M, PROTTER M. On single image scale-up using sparse-representations[C]// Proceedings of the 7th International Conference on Curves and Surfaces. Springer, 2010:711-730.
[28] MARTIN D, FOWLKES C, TAL D, et al. A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics[C]// Proceedings of the 8th IEEE International Conference on Computer Vision (ICCV). IEEE, 2001,2:416-423.
[29] HUANG J B, SINGH A, AHUJA N. Single image super-resolution from transformed self-exemplars[C]// Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2015:5197-5206.
[30] MATSUI Y, ITO K, ARAMAKI Y, et al. Sketch-based manga retrieval using manga109 dataset[J]. Multimedia Tools and Applications, 2017,76(20):21811-21838.
[31] HUI Z, GAO X B, YANG Y C, et al. Lightweight image super-resolution with information multi-distillation network[C]// Proceedings of the 27th ACM International Conference on Multimedia. ACM, 2019:2024-2032.
[32] AHN N, KANG B, SOHN K A. Fast, accurate, and lightweight super-resolution with cascading residual network[C]// Proceedings of the 2018 European Conference on Computer Vision (ECCV). Springer, 2018:252-268.
[33] WANG L G, DONG X Y, WANG Y Q, et al. Exploring sparsity in image super-resolution for efficient inference[C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2021:4915-4924.