Computer and Modernization ›› 2024, Vol. 0 ›› Issue (08): 59-66.doi: 10.3969/j.issn.1006-2475.2024.08.011
Previous Articles Next Articles
Online:
2024-08-28
Published:
2024-08-28
CLC Number:
FU Shugang1, 2, 3. Multi-object Tracking of UAV Based on Improved YOLOX and New Data Association Method[J]. Computer and Modernization, 2024, 0(08): 59-66.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.c-a-m.org.cn/EN/10.3969/j.issn.1006-2475.2024.08.011
[1] PATRICIO D I, RIEDER R. Computer vision and artificial intelligence in precision agriculture for grain crops: A systematic review[J]. Computers and Electronics in Agriculture, 2018,153:69-81. [2] VOULODIMOS A, DOULAMIS N, DOULAMIS A, et al. Deep learning for computer vision: A brief review[J]. Computational Intelligence and Neuroscience, 2018,2018. DOI: 10.1155/2018/7068349. [3] JANAI J, GUNEY F, BEHL A, et al. Computer vision for autonomous vehicles: Problems, datasets and state of the art[J]. Foundations and Trends in Computer Graphics and Vision, 2020,12(1-3):1-308. [4] FERNANDEZ-SANJURJO M, MUCIENTES M, BREA V M. Real-time multiple object visual tracking for embedded GPU systems[J]. IEEE Internet of Things Journal, 2021,8(11):9177-9188. [5] CHEN T, PENNISI A, LI Z, et al. A hierarchical association framework for multi-object tracking in airborne videos[J]. Remote Sensing, 2018,10(9). DOI: 10.3390/rs10091347. [6] KOK K Y, RAJENDRAN P. Differential-evolution control parameter optimization for unmanned aerial vehicle path planning[J]. PLoS One, 2016,11(3). DOI: 10.1371/journal.pone.0150558. [7] DELIBASOGLU I. UAV images dataset for moving object detection from moving cameras[J]. arXiv preprint arXiv:2103.11460, 2021. [8] ZHU P F, WEN L Y, DU D W, et al. Detection and tracking meet drones challenge[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022,44(11):7380-7399. [9] AZIMI S M, KRAUS M, BAHMANYAR R, et al. Multiple pedestrians and vehicles tracking in aerial imagery: A comprehensive study[J]. arXiv preprint arXiv:2010.09689, 2020. [10] WEN L Y, DU D W, ZHU P F, et al. Detection, tracking, and counting meets drones in crowds: A benchmark[C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. IEEE, 2021:7808-7817. [11] VARGA L A, KIEFER B, MESSMER M, et al. SeaDronesSee: A maritime benchmark for detecting humans in open water[C]// Proceedings of the 2022 IEEE/CVF Winter Conference on Applications of Computer Vision. IEEE, 2022:3686-3696. [12] KAMPFFMEYER M, SALBERG A B, JENSSEN R. Semantic segmentation of small objects and modeling of uncertainty in urban remote sensing images using deep convolutional neural networks[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition Workshops. IEEE, 2016:680-688. [13] AHMED I, AHMAD M, AHMAD A, et al. Top view multiple people tracking by detection using deep SORT and YOLOv3 with transfer learning: Within 5G infrastructure[J]. International Journal of Machine Learning and Cybernetics, 2021,12(11):3053-3067. [14] WANG Z Y, MIAO D Q, ZHAO C R, et al. A robust long-term pedestrian tracking-by-detection algorithm based on three-way decision[C]// Proceedings of the 2019 International Joint Conference on Rough Sets. Springer, 2019:522-533. [15] XIE Y F, HUANG Y, SONG T L. Iterative joint integrated probabilistic data association filter for multiple-detection multiple-target tracking[J]. Digital Signal Processing, 2018,72:232-243. [16] WANG Z D, ZHENG L, LIU Y X, et al. Towards real-time multi-object tracking[C]// Proceedings of the 16th European Conference on Computer Vision. Springer, 2020:107-122. [17] MUNJAL B, AFTAB A R, AMIN S, et al. Joint detection and tracking in videos with identification features[J]. Image and Vision Computing, 2020,100. DOI: 10.1016/j.imavis.2020.103932. [18] LIN X W, GUO Y A, WANG J Q. Global correlation network: End-to-end joint multi-object detection and tracking[J]. arXiv preprint arXiv:2103.12511, 2021. [19] SUN Z H, CHEN J, CHAO L, et al. A survey of multiple pedestrian tracking based on tracking-by-detection framework[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2021,31(5):1819-1833. [20] WU J L, CAO J L, SONG L C, et al. Track to detect and segment: An online multi-object tracker[C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. IEEE, 2021:12347-12356. [21] WOJKE N, BEWLEY A, PAULUS D. Simple online and realtime tracking with a deep association metric[C]// Proceedings of the 2017 IEEE International Conference on Image Processing (ICIP). IEEE, 2017:3645-3649. [22] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]// Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 2014:580-587. [23] REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. arXiv preprint arXiv:1506.01497, 2015. [24] LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]// Proceedings of the 2017 IEEE International Conference on Computer Vision. IEEE, 2017:2999-3007. [25] ZHOU X Y, KOLTUN V, KRAHENBUHL P. Tracking objects as points[C]// Proceedings of the 16th European Conference on Computer Vision. Springer, 2020:474-490. [26] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: Unified, real-time object detection[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 2016:779-788. [27] GE Z, LIU S T, WANG F, et al. YOLOX: Exceeding YOLO series in 2021[J]. arXiv preprint arXiv:2107.08430, 2021. [28] BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLOv4: Optimal speed and accuracy of object detection[J]. arXiv preprint arXiv:2004.10934, 2020. [29] JOCHER G, STOKEN A, BOROVEC J, et al. Ultralytics/YOLOv5: v5.0-YOLOv5-P6 1280 models, AWS, Supervise.ly and YouTube integrations[DB/OL]. (2021-04-11)[2023-03-19]. https://ui.adsabs.harvard.edu/abs/2021zndo...4679653J/abstract. [30] LU Z C, RATHOD V, VOTEL R, et al. RetinaTrack: Online single stage joint detection and tracking[C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. IEEE, 2020:14656-14666. [31] ZHANG Y F, WANG C Y, WANG X G, et al. FairMOT: On the fairness of detection and re-identification in multiple object tracking[J]. International Journal of Computer Vision, 2021,129(11):3069-3087. [32] CHU P, WANG J, YOU Q Z, et al. TransMOT: Spatial-temporal graph transformer for multiple object tracking[C]// Proceedings of the 2023 IEEE/CVF Winter Conference on Applications of Computer Vision. IEEE, 2023:4859-4869. [33] KALMAN R E. A new approach to linear filtering and prediction problems[J]. Journal of Basic Engineering, 1960,82(1):35-45. [34] BEWLEY A, GE Z Y, OTT L, et al. Simple online and realtime tracking[C]// Proceedings of the 2016 IEEE International Conference on Image Processing (ICIP). IEEE, 2016:3464-3468. [35] DU Y H, WAN J F, ZHAO Y Y, et al. GIAOTracker: A comprehensive framework for MCMOT with global information and optimizing strategies in VisDrone 2021[C]// Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision Workshops. IEEE, 2021:2809-2819. [36] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[J]. arXiv preprint arXiv:1706.03762, 2017. [37] WOO S, PARK J, LEE J Y, et al. CBAM: Convolutional block attention module[C]// Proceedings of the 2018 European Conference on Computer Vision. Springer, 2018:3-19. [38] WANG C Y, LIAO H Y M, WU Y H, et al. CSPNet: A new backbone that can enhance learning capability of CNN[C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. IEEE, 2020:1571-1580. [39] HE K M, ZHANG X Y, REN S Q, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015,37(9):1904-1916. [40] LIU S, QI L, QIN H F, et al. Path aggregation network for instance segmentation[C]// Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 2018:8759-8768. [41] LIN T Y, DOLLAR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 2017:936-944. [42] DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16x16 words: Transformers for image recognition at scale[J]. arXiv preprint arXiv:2010.11929, 2020. [43] CARION N, MASSA F, SYNNAEVE G, et al. End-to-end object detection with transformers[C]// Proceedings of the 16th European Conference on Computer Vision. Springer, 2020:213-229. [44] LIU Z, LIN Y T, CAO Y, et al. Swin transformer: Hierarchical vision transformer using shifted windows[C]// Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. IEEE, 2021:9992-10002. [45] ZHANG Y F, SUN P Z, JIANG Y, et al. ByteTrack: Multi-object tracking by associating every detection box[C]// Proceedings of the 17th European Conference on Computer Vision. Springer, 2022:1-21. [46] CHEN G L, WANG W G, HE Z J, et al. VisDrone-MOT2021: The vision meets drone multiple object tracking challenge results[C]// Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision Workshops. IEEE, 2021:2839-2846. [47] DU D W, QI Y K, YU H Y, et al. The unmanned aerial vehicle benchmark: Object detection and tracking[C]// Proceedings of the 2018 European Conference on Computer Vision. Springer, 2018:375-391. [48] CHEN L, AI H Z, ZHUANG Z J, et al. Real-time multiple people tracking with deeply learned candidate selection and person re-identification[C]// Proceedings of the 2018 IEEE International Conference on Multimedia and Expo (ICME). IEEE, 2018. DOI: 10.1109/ICME.2018.8486597. [49] BOCHINSKI E, EISELEIN V, SIKORA T. High-speed tracking-by-detection without using image information[C]// Proceedings of the 2017 14th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS). IEEE, 2017. DOI: 10.1109/AVSS.2017.8078516. [50]PIRSIAVASH H, RAMANAN D, FOWLKES C C. Globally-optimal greedy algorithms for tracking a variable number of objects[C]// Proceedings of the 2011 Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2011:1201-1208. [51] ZENG F G, DONG B, ZHANG Y A, et al. MOTR: End-to-end multiple-object tracking with transformer[C]// Proceedings of the 17th European Conference on Computer Vision. Springer, 2022:659-675. [52] MEINHARDT T, KIRILLOV A, LEAL-TAIXE L, et al. Trackformer: Multi-object tracking with transformers[C]// Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. IEEE, 2022:8834-8844. [53] MILAN A, ROTH S, SCHINDLER K. Continuous energy minimization for multitarget tracking[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014,36(1):58-72. [54] BAE S H, YOON K J. Robust online multi-object tracking based on tracklet confidence and online discriminative appearance learning[C]// Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 2014:1218-1225. [55] SUN S J, AKHTAR N, SONG H S, et al. Deep affinity network for multiple object tracking[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021,43(1):104-119. [56] XIANG Y, ALAHI A, SAVARESE S. Learning to track: Online multi-object tracking by decision making[C]// Proceedings of the 2015 IEEE International Conference on Computer Vision. IEEE, 2015:4705-4713. |
[1] | HE Sida, CHEN Pinghua. Intent-based Lightweight Self-Attention Network for Sequential Recommendation [J]. Computer and Modernization, 2024, 0(12): 1-9. |
[2] | ZHAO Chenyang, XUE Tao, LIU Junhua. Fashion Clothing Pattern Generation Based on Improved Stable Diffusion [J]. Computer and Modernization, 2024, 0(12): 15-23. |
[3] | HUANG Tingpei1, MA Lubiao1, LI Shibao2, LIU Jianhang1. Gesture Recognition Method Based on WiFi and Prototypical Network [J]. Computer and Modernization, 2024, 0(12): 34-39. |
[4] | ZHANG Xiaodong1, BAI Guangzhi1, LI Min1, LI Haoyang2. Oil and Gas Well Production Prediction Model Based on Empirical Wavelet Transform [J]. Computer and Modernization, 2024, 0(12): 53-58. |
[5] | WANG Yanyuan, MAO Zhengchong. Detection and Recognition Algorithms for Chinese and English Scene Text Images [J]. Computer and Modernization, 2024, 0(12): 84-90. |
[6] | LI Junchao1, YOU Fei1, ZHANG Chao2, SU Lele2, GONG Yan2 . BiLSTM-Attention Prediction Model and Error Analysis #br# Based on Novel Multi-objective Coati Optimization Algorithm [J]. Computer and Modernization, 2024, 0(11): 70-76. |
[7] | ZHANG Yu1, 2, LI Jing1, 2, MA Ming1, 2, WANG Zhongxiang1, 2, SUN Yan1, 2. YOLOLW: A Novel Lightweight Object Detection Model [J]. Computer and Modernization, 2024, 0(11): 91-98. |
[8] | QI Xian, LIU Daming, CHANG Jiaxin. Multi-view 3D Reconstruction Based on Improved Self-attention Mechanism [J]. Computer and Modernization, 2024, 0(11): 106-112. |
[9] | YANG Jun1, HU Wei1, ZHU Wenfu2. Visual SLAM Loop Closure Detection Algorithm Based on Improved MobileNetV3 [J]. Computer and Modernization, 2024, 0(10): 21-26. |
[10] | WEI Xuecheng1, JIANG Lingyun1, LI Yan2, HE Fei2. Improved Roadside Monocular View Small Target Detection Algorithm Based on YOLOv5 [J]. Computer and Modernization, 2024, 0(10): 27-34. |
[11] | DU Mengjun1, LI Ang1, TONG Jun1, QIAN Jin1, KANG Kai1, WANG Ruoding1, JIN Wenxing2. Power Information Data Fusion Model Based on Improved Extreme Learning Algorithm [J]. Computer and Modernization, 2024, 0(10): 61-64. |
[12] | YANG Shijun1, DI Guangyi1, GAO Jun1, CHEN Jianfei1, WANG Yaokun1, JI Xiaohan2. Sentiment Consistency Detection Based on Cross Modal Attention Fusion and#br# Information Perception [J]. Computer and Modernization, 2024, 0(10): 113-119. |
[13] | HOU Congying, YANG Wengqing, WANG Zhao, CHENG Cong. Speech Enhancement Based on Time-frequency Self-attention Residual Temporal#br# Convolutional Networks [J]. Computer and Modernization, 2024, 0(09): 20-24. |
[14] | ZHANG Ze1, ZHANG Jianquan2, 3, ZHOU Guopeng2, 3. Camera Module Defect Detection Based on Improved YOLOv8s [J]. Computer and Modernization, 2024, 0(09): 107-113. |
[15] | ZHENG Shangpo1, CHEN Defu1, LI Jianli2, LIN Guoxian2, WANG Xingping3. Pedestrian Tracking Algorithm Based on Improved YOLOv5s and DeepSORT [J]. Computer and Modernization, 2024, 0(08): 54-58. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||