[1] 鄢化彪,徐方奇,黄绿娥,等. 基于深度学习的多视图立体重建方法综述[J]. 光学精密工程, 2023,31(16):2444-2464.
[2] 杨航,陈瑞,安仕鹏,等. 深度学习背景下的图像三维重建技术进展综述[J]. 中国图象图形学报, 2023,28(8):2396-2409.
[3] IZADI S, KIM D, HILLIGES O, et al. Kinectfusion: Real-time 3D reconstruction and interaction using a moving depth camera[C]// Proceedings of the 24th Annual ACM Symposium on User Interface Software and Technology. ACM, 2011:559-568.
[4] WANG J Y, ZHONG Y R, DAI Y C, et al. Deep two-view structure-from-motion revisited[C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. IEEE , 2021:8953-8962..
[5] WEN Q R, YANG J R, YANG X, et al. PatchDCT: Patch refinement for high quality instance segmentation[J]. arXiv preprint arXiv:2302.02693, 2023.
[6] ZHANG Y, CHEN X. CoD-Fusion: Multi-view stereo via depth map fusion: A coordinate decent approach[J]. Neurocomputing, 2016,173:1919-1930.
[7] YAO Y, LUO Z X, LI S W, et al. MVSNet: Depth inference for unstructured multi-view stereo[C]// Proceedings of the 2018 European Conference on Computer Vision(ECCV). Springer, 2018:767-783.
[8] YAO Y, LUO Z X, LI S W, et al. Recurrent MVSNet for high-resolution multi-view stereo depth inference[C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. IEEE, 2019:5525-5534.
[9] GU X D, FAN Z W, ZHU S Y, et al. Cascade cost volume for high-resolution multi-view stereo and stereo matching[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR). IEEE, 2020:10357-10366.
[10] WANG F J H, GALLIANI S, VOGEL C, et al. Patchmatchnet: Learned multi-view patchmatch stereo[C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. IEEE, 2021:14194-14203.
[11] RONNEBERGER O, FISCHER P, BROX T. U-Net: Convolutional networks for biomedical image segmentation[C]// Proceedings of the 18th International Conference on Medical Image Computing and Computer-Assisted Intervention(MICCAI 2015). Springer, 2015:234-241.
[12] WU Y X, HE K M. Group normalization[C]// Proceedings of the 2018 European Conference on Computer Vision(ECCV). Springer, 2018:3-19.
[13] IOFFE S, SZEGEDY C. Batch normalization: Accelerating deep network training by reducing internal covariate shift[C]// 2015 International Conference on Machine Learning. PMLR, 2015:448-456.
[14] BELLO I, ZOPH B, VASWANI A, et al. Attention augmented convolutional networks[J]. arXiv preprint arXiv:1904.09925, 2019.
[15] RAMACHANDRAN P, PARMAR N, VASWANI A, et al. Stand-alone self-attention in vision models[C]// 32nd Conference on Neural Information Processing Systems (NeurIPS 2019). IEEE, 2019:68-80.
[16] SHAW P, USZKOREIT J, VASWANI A. Self-attention with relative position representations[J]. arXiv preprint arXiv:1803.02155, 2018.
[17] HUI T W, LOY C C, TANG X O. Depth map super-resolution by deep multi-scale guidance[C]// European Conference on Computer Vision(ECCV 2016). Springer, 2016:353-369.
[18] JENSEN R, DAHL A, VOGIATZIS G, et al. Large scale multi-view stereopsis evaluation[C]// 2014 IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 2014:406-413.
[19] KNAPITSCH A, PARK J, ZHOU Q Y, et al. Tanks and temples: Benchmarking large-scale scene reconstruction[J]. ACM Transactions on Graphics, 2017,36(4):1-13.
[20] WANG X, WANG C, LIU B, et al. Multi-view stereo in the deep learning era: A comprehensive revfiew[J]. Displays, 2021. DOI: 10.1016/j.displa.2021.102102.
[21] CAMPBELL N D F, VOGIATZIS G, HERNáNDEZ C, et al. Using multiple hypotheses to improve depth-maps for multi-view stereo[C]// Proceedings of the 10th European Conference on Computer Vision. Springer, 2008:766-779.
[22] FURUKAWA Y, PONCE J. Accurate, dense, and robust multiview stereopsis[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009,32(8):1362-1376.
[23] GALLIANI S, LASINGER K, SCHINDLER K. Massively parallel multiview stereopsis by surface normal diffusion[C]// Proceedings of the 2015 IEEE International Conference on Computer Vision. IEEE, 2015:873-881.
[24] JI M Q, GALL J, ZHENG H T, et al. SurfaceNet: An end-to-end 3D neural network for multiview stereopsis[C]// Proceedings of 2017 IEEE International Conference on Computer Vision. IEEE, 2017:2326-2334.
[25] CHEN R, HAN S F, XU J, et al. Point-based multi-view stereo network[C]// Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. IEEE, 2019:1538-1547.
[26] YU Z H, GAO S H. Fast-MVSNet: Sparse-to-dense multi-view stereo with learned propagation and Gauss-Newton refinement[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR). IEEE, 2020:11016-11025.
[27] YANG J Y, MAO W, ALVAREZ J M, et al. Cost volume pyramid based depth inference for multi-view stereo[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR). IEEE, 2020:11016-11025.
[28] SCHÖNBERGER J L, ZHENG E, FRAHM J M, et al. Pixelwise view selection for unstructured multi-view stereo[C]// Proceedings of the 14th European Conference on Computer Vision(ECCV 2016). Springer, 2016:501-518.