An Improved YOLOv5-based Method for Dense Pedestrian Detection Under Complex Road Conditions
(1. College of Energy and Electrical Engineering, Hohai University, Nanjing 211100, China; 2. Key Laboratory of Traces Science and Technology, Ministry of Public Security, Beijing 100038, China)
SUN Ruiqi1, DOU Xiuchao2, LI Zhihua1, JIANG Xuemei2, SUN Yuhao1. An Improved YOLOv5-based Method for Dense Pedestrian Detection Under Complex Road Conditions[J]. Computer and Modernization, 2024, 0(05): 85-91.
[1] LI R. Application of deep learning in computer vision[J]. Computer and Network, 2021,47(15):27-29.
[2] AHMED Z, INIYAVAN R, MADHAN M P. Enhanced vulnerable pedestrain detection using deep learning[C]// 2019 International Conference on Communication and Signal Processing. IEEE, 2019:971-974.
[3] 李晓艳,符惠桐,牛文涛,等. 基于深度学习的多模态行人检测算法[J]. 西安交通大学学报, 2022,56(10):61-70.
[4] XU J L , RAMOS S, VAZQUEZ D, et al. Hierarchical adaptive structural SVM for domain adaptation[J]. International Journal of Computer Vision, 2014,119(2):159-178.
[5] WASALA M, KRYJAK T. Real-time HOG+SVM based object detection using SoC FPGA for a UHD video stream[C]// 2022 11th Mediterranean Conference on Embedded Computing. IEEE, 2022. DOI:10.1109/MECO55406.2022.
9797113.
[6] GE W H, PAN C Y, WU A C, et al. Cross-camera feature prediction for intra-camera supervised person re-identification across distant scenes[C]// Proceedings of the 29th ACM International Conference on Multimedia. ACM,2021. 10.48550/arXiv.2107.13904.
[7] GHARI B, TOURANI A, SHAHBAHRAMI A. A robust pedestrian detection approach for autonomous vehicles[J]. arXiv preprint arXiv:2210.10489, 2022.
[8] NGUYEN Q K, NGUYEN T T H, NGUYEN V T K,et al. G-CAME: Gaussian-class activation mapping explainer for object detectors[J]. arXiv preprint arXiv:2306.03400, 2023.
[9] 苏松志,李绍滋,陈淑媛,等. 行人检测技术综述[J]. 电子学报, 2012,40(4):814-820.
[10] UIJLINGS J R R, VAN DE SANDE K E A, GEVERS T, et al. Selective search for object recognition[J]. International Journal of Computer Vision, 2013,104(2):154-171.
[11] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]// 2014 IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 2014:580-587.
[12] GIRSHICK R. Fast R-CNN[C]// 2015 IEEE International Conference on Computer Vision. IEEE, 2015:1440-1448.
[13] REN S Q, HE K M, GIRSHICK R. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017,39(6):1440-1448.
[14] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: Unified, real-time object detection[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 2015:779-788.
[15] REDMON J, FARHADI A. YOLOv3: An incremental improvement[J]. arXiv preprint arXiv:1804.02767, 2018.
[16] VAN ETTEN A. You only look twice: Rapid multi-scale object detection in satellite imagery[J]. arXiv preprint arXiv:1805.09512, 2018.
[17] 曾凯,李响,陈宏君,等. 引入注意力机制的改进型YOLOv5网络研究[J]. 软件工程, 2023,26(1):55-58.
[18] 杨文涛,张维光. 基于改进YOLOv5m的弱小目标识别方法[J]. 计算机测量与控制, 2022,30(12):218-223.
[19] 俞军,贾银山. 改进YOLOv5的小目标检测算法[J]. 计算机工程与应用, 2023,59(12):201-207.
[20] ZHAO J Q, ZHANG X H, YAN J W, et al. A wheat spike detection method in UAV images based on improved YOLOv5[J]. Remote Sensing, 2021,13(16):3095-4001.
[21] HE K M, ZHANG X Y, REN S Q. Deep residual learning for image recognition[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 2016:770-778.
[22] GAO S H, CHENG M M, ZHAO K. Res2Net: A new multi-scale backbone architecture[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019,43(2):652-662.
[23] 毛琳,任凤至,杨大伟,等. 基于卷积神经网络的全景分割Transformer模型[J]. 软件学报, 2023,34(7):3408-3421.
[24] ZHU L, WANG X J, KE Z H. BiFormer: Vision transformer with bi-level routing attention[C]// 2023 IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 2023:10323-10333.
[25] QUAN Y, ZHANG D, ZHANG L Y. Centralized feature pyramid for object detection[J]. arXiv preprint arXiv:2210.02093.
[26] XU C, WANG J W, YANG W, et al. Detecting tiny objects in aerial images: A normalized Wasserstein distance and a new benchmark[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2022,190(8):79-93.
[27] ZHANG S F, XIE Y L, WAN J, et al. WiderPerson: A diverse dataset for dense pedestrian detection in the wild[J]. IEEE Transactions on Multimedia, 2019,22(2):380-393.