[1] 薛涛,张忠,韩勇,等. 输电线路运行安全的影响因素以及应对策略探索[J]. 电子元器件与信息技术, 2019,3(8):30-32.
[2] 苗俊,尤志鹏,袁齐坤,等. 高压输电线路智能巡检新技术探讨[J]. 中国设备工程, 2019,433(21):109-110.
[3] 王祥,张维平. 输电线路各种监测系统应用现状浅析[J]. 电力设备管理, 2021,54(3):34-36.
[4] 腾云,雷丞,李洪涛,等. 基于 HOG 和 SVM 的高压隔离开关分合闸状态自动识别技术研究[J]. 高压电器, 2020,56(9):246-252.
[5] 何春光. 基于改进 SIFT 算法的输电线路挂线故障隐患检测[J]. 电子设计工程, 2021,29(2):99-102.
[6] 吴婕萍,赵文昊,于文萍. 基于 SIFT 算法的导线异物悬挂检测方法研究[J]. 中小企业管理与科技(中旬刊), 2020,614(6):178-179.
[7] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]// 2014 IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 2014:580-587.
[8] GIRSHICK R. Fast R-CNN[C]// 2015 IEEE International Conference on Computer Vision. IEEE, 2015:1440-1448.
[9] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: Unified, real-time object detection[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 2016:779-788.
[10] REDMON J, FARHADI A. YOLO9000: Better, faster, stronger[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 2017:6517-6525.
[11] REDMON J, FARHADI A. YOLOv3: An incremental improvement[J]. arXiv preprint arXiv:1804.02767, 2018.
[12] ZHENG G E, LIU S T, WANG F, et al. YOLOX: Exceeding YOLO series in 2021[J]. arXiv preprint arXiv:2107.08430, 2021.
[13] TAN M, PANG R, LE Q V. EfficientDet: Scalable and efficient object detection[C]// Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR). IEEE, 2020:10781-10790.
[14] HAN J M, YANG Z, ZHANG Q Y, et al. A method of insulator faults detection in aerial images for high-volt age transmission lines inspection[J]. Applied Sciences,2019,9(10). DOI: 10.3390/app9102009.
[15] 顾超越,李喆,史晋涛,等. 基于改进Faster-RCNN的无人机巡检架空线路销钉缺陷检测[J]. 高电压技术, 2020,46(9):3089-3096.
[16] 林航,耿多飞,于浩,等. 基于双模型的输电线绝缘子自爆检测算法[J]. 计算机与现代化, 2022(7):15-20.
[17] 吴鹏,姜海波,王永强,等. 基于图像切片的移动端输电线路鸟类检测算法研究[J]. 计算机与数字工程, 2021,49(4):846-851.
[18] SADYKOVA D, PERNEBAYEVA D, BAGHERI M, et al. IN-YOLO: Real-time detection of outdoor high voltage insulators using uav imaging[J]. IEEE Transactions on Power Delivery, 2020,35(3):1599-1601.
[19] HAN J M, YANG Z, XU H, et al. Search like an eagle: A cascaded model for insulator missing faults detection in aerial images[J]. Energies,2020,13(3):713
[20] 朱登柯,侯兴松,要晓迪. 基于EfficientDet网络的输电线路故障检测[J]. 国外电子测量技术, 2021,40(6):144-151.
[21] YU J H, JIANG Y N, WANG Z Y, et al. UnitBox: An advanced object detection network[C]// Proceedings of the 24th ACM International Conference on Multimedia. ACM, 2016:516-520.
[22] REZATOFIGHI H, TSOI N, GWAK J Y, et al. Generalized intersection over union: A metric and a loss for bounding box regression[J]. arXiv preprint arXiv:1902.09630, 2019.
[23] ZHENG Z H, WANG P, REN D W, et al. Enhancing geometric factors in model learning and inference for object detection and instance segmentation[J]. IEEE Transactions on Cybernetics, 2022,52(8):8574-8586.
[24] ZHENG Z H, WANG P, LIU W, et al. Distance-IoU Loss: Faster and better learning for bounding box regression[C]// Proceedings of the 2020 AAAI Conference on Artificial Intelligence. 2020:12993-13000.
[25] GHIASI G, CUI Y, SRINIVAS A, et al. Simple copy-paste is a strong data augmentation method for instance segmentation[C]// Proceedings of 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR). IEEE, 2021:2917-2927.
[26] LIU S T, HUANG D, WANG Y H. Learning spatial fusion for single-shot object detection[J]. arXiv preprint arXiv:1911.09516, 2019.
[27] LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]// Proceedings of the 2017 IEEE International Conference on Computer Vision. IEEE, 2017:2980-2988.