[1] 程翰林. 无线通信新技术——OFDM的发展与应用[J]. 中小企业管理与科技(中旬刊), 2017(2):175-176.
[2] QI C H, YUE G S, WU L N, et al. Pilot design schemes for sparse channel estimation in OFDM systems[J]. IEEE Transactions on Vehicular Technology, 2015,64(4):1493-1505.
[3] 何雪云,宋荣方,周克琴. 基于压缩感知的OFDM稀疏信道估计导频图案设计[J]. 南京邮电大学学报(自然科学版), 2011,31(5):7-11.
[4] JIN G, HU Y J. A novel channel estimation based on pilot-aided in LTE downlink systems[C]// 2014 7th International Symposium on Computational Intelligence and Design. IEEE, 2014. DOI: 10.1109/ISCID.2014.102.
[5] 刘勇. 多径衰落信道中OFDM系统预均衡技术的研究[D]. 重庆:重庆邮电大学, 2019.
[6] FARZAMNIA A, HLAING N W, HALDAR M K, et al. Channel estimation for sparse channel OFDM systems using least square and minimum mean square error techniques[C]// 2017 International Conference on Engineering and Technology(ICET). IEEE, 2017.DOI: 10.1109/ICEngTechnol.2017.8308193.
[7] 刘昊,徐志康,周春花. OFDM 系统的信道估计技术讨论[J]. 中国新通信, 2019,21(23):64.
[8] 李贵勇,吕京昭,陈博,等. 基于压缩感知的OFDM系统信道估计方法[J]. 光通信研究, 2022(1):52-57.
[9] DONOHO D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006,52(4):1289-1306.
[10] 何雪云,宋荣方,周克琴. 基于压缩感知的OFDM系统稀疏信道估计新方法研究[J]. 南京邮电大学学报(自然科学版), 2010,30(2):60-65.
[11] NEEDELL D, VERSHYNIN R. Signal recovery from incomplete and inaccurate measurements via regularized orthogonal matching pursuit[J]. IEEE Journal of Selected Topics in Signal Processing, 2010,4(2):310-316.
[12] 肖沈阳,金志刚,苏毅珊.等. 一种优化的gOMP稀疏OFDM信道估计方法[J]. 工程科学与技术, 2017,49(5):149-155.
[13] WANG R, CAI J Y, YU X, et al. Compressive channel estimation for universal filtered multi-carrier system in high-speed scenarios[J]. IET Communications, 2017,11(15):2274-2281.
[14] MEI L D, GAO F, PAN H Y, et al. An improved ROMP sparse channel estimation algorithm in OFDM system[C]// 2015 IEEE International Conference on Signal Processing. IEEE, 2015. DOI: 10.1109/ICSPCC.2015.7338796.
[15] CAI J F, CANDES E J, SHEN Z. A singular value thresholding algorithm for matrix completion[J]. SIAM Journal on Optimization, 2010,20(4):1956-1982.
[16] 李姣军,蒋扬,邱天,等. 基于压缩感知的OFDM稀疏信道估计算法[J]. 重庆理工大学学报(自然科学), 2021,35(4):117-122.
[17] RAGHAVENDRA M R, GIRIDHAR K. Improving channel estimation in OFDM systems for sparse multipath channels[J]. Signal Processing Letters, 2005,12(1):52-55.
[18] 彭义刚,索津莉,戴琼海,等. 从压缩传感到低秩矩阵恢复:理论与应用[J]. 自动化学报, 2013,39(7):981-994.
[19] 张茜雯,王金平. 加权最小化问题中限制等距性的研究[J]. 宁波大学学报(理工版), 2021,34(5):39-42.
[20] 张晓波. 基于有限等距性质的压缩感知重建算法性能研究[D]. 北京:北京邮电大学, 2019.
[21] CHANDRASEKARAN V, SANGHAVI S, PARRILO P A, et al. Rank-sparsity incoherence for matrix decomposition[J]. SIAM Journal on Optimization, 2009,21(2):572-596.
[22] NATARAJAN B K. Sparse approximate solutions to linear systems[J]. SIAM Journal on Computing, 1995,24(2):227-234.
[23] 蔡云,石莹. 基于矩阵RIP条件的低秩矩阵恢复算法[J]. 科技风, 2019(30):239.
[24] CANDES E, RECHT B. Exact matrix completion via convex optimization[J]. Communications of the ACM, 2012,55(6):111-119.
[25] RECHT B, FAZEL M, PARRILO P A. Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization[J]. SIAM Review, 2010,52(3):471-501.
[26] FAZEL M. Matrix Rank Minimization with Applications[D]. Palo Alto, USA: Stanford University, 2002.
[27] TOH K C, YUN S. An accelerated proximal gradient algorithm for nuclear norm regularized linear least squares problems[J]. Pacific Journal of Optimization, 2010,6(3):615-640.
[28] BECK A, TEBOULLE M. A fast iterative shrinkage thresholding algorithm for linear inverse pro-blems[J]. SIAM Journal on Imaging Sciences, 2009,2(1):183-202.
[29] ZHANG D B, HU Y, YE J P, et al. Matrix completion by truncated nuclear norm regularization[C]// 2012 IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 2012:2192-2199.
[30] XU Z Q, HE R, XIE S L, et al. Adaptive rank estimate in robust principal component analysis[C]// Proceedings of 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. IEEE, 2021:6577-6586.