Scenes Text Modification Network for Uyghur Based on Generative Adversarial Network
(1. School of Computer and Information Engineering, Xinjiang Agricultural University, Urumqi 830052, China;
2. Xinjiang Agricultural Informatization Engineering Technology Research Center, Urumqi 830052, China;
3. Multilingual Information Technology Laboratory, Xinjiang Technology Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China)
FU Hong-lin, ZHANG Tai-hong, YANG Ya-ting, Aizimaiti Aiwanier, MA Bo. Scenes Text Modification Network for Uyghur Based on Generative Adversarial Network[J]. Computer and Modernization, 2024, 0(01): 41-46.
[1] WU L, ZHANG C Q, LIU J M, et al. Editing text in the wild[C]// Proceedings of the 27th ACM International Conference on Multimedia. 2019:1500-1508.
[2] ZAMIR S W, ARORA A, KHAN S, et al. Restormer: Efficient transformer for high-resolution image restoration[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2022:5728-5739.
[3] GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial networks[J]. Communications of the ACM, 2020,63(11):139-144.
[4] ZHANG B W, GU S Y, ZHANG B, et al. Styleswin: Transformer-based GAN for high-resolution image generation[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and pattern Recognition. 2022:11304-11314.
[5] SIAROHIN A, LATHUILIERE S, SANGINETO E, et al. Appearance and pose-conditioned human image generation using deformable GANs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021,43(4):1156-1171.
[6] GATYS L A, ECKER A S, BETHGE M. A neural algorithm of artistic style[J]. arXiv preprint arXiv: 1508.06576, 2015.
[7] CHAN C R L N, GINOSAR S, ZHOU T H, et al. Everybody dance now[C]// 2019 IEEE/CVF International Conference on Computer Vision (ICCV). 2019:5932-5941.
[8] XIE C H, TAN M X, GONG B Q, et al. Adversarial examples improve image recognition[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2020:816-825.
[9] ZHU J Y, PARK T, ISOLA P, et al. Unpaired image-to-image translation using cycle-consistent adversarial networks[C]// 2017 IEEE International Conference on Computer Vision (ICCV). 2017:2242-2251.
[10] LIU G L, REDA F A, SHIH K J, et al. Image inpainting for irregular holes using partial convolutions[C]// Proceedings of the European Conference on Computer Vision (ECCV). 2018: 89-105.
[11] LI W B, ZHOU K, QI L, et al. Best-buddy GANs for highly detailed image super-resolution[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2022,36(2):1412-1420.
[12] MIRZA M, OSINDERO S. Conditional generative adversarial nets[J]. arXiv preprint arXiv:1411.1784, 2014.
[13] RADFORD A, METZ L, CHINTALA S. Unsupervised representation learning with deep convolutional generative adversarial networks[J]. arXiv preprint arXiv:1511.06434, 2015.
[14] ZHANG H, XU T, LI H S, et al. Stackgan: Text to photo-realistic image synthesis with stacked generative adversarial networks[C]// Proceedings of the IEEE International Conference on Computer Vision. 2017:5908-5916.
[15] KARRAS T, LAINE S, AILA T. A style-based generator architecture for generative adversarial networks[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2019:4396-4405.
[16]ROY P, BHATTACHARYA S, GHOSH S, et al. STEFANN: Scene text editor using font adaptive neural network[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2020:13225-13234.
[17] YANG Q P, HUANG J, LIN W. SwapText: Image based texts transfer in scenes[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2020:14688-14697.
[18] LEE J, KIM Y, KIM S, et al. RewriteNet: Realistic scene text image generation via editing text in real-world image[J]. arXiv preprint arXiv:2107.11041, 2021.
[19] KRISHNAN P, KOVVURI R, PANG G, et al. TextStyleBrush: Transfer of text aesthetics from a single example[J]. arXiv preprint arXiv:2106.08385, 2021.
[20] ZHANG G W, WANG W L, ZHAO P H, et al. Construction of scene tibetan dataset based on GAN[J]. Journal of Physics Conference Series, 2021,1871(1). DOI: 10.1088/1742-6596/1871/1/012130.
[21] NERINOVSKY A, BUZHINSKY I, FILCHENKOV A. Realistic text replacement with non-uniform style conditioning[J]. IEEE Access, 2021,9:92706-92714.
[22] JOHNSON J, ALAHI A, FEI-FEI L. Perceptual losses for real-time style transfer and super-resolution[C]// Proceedings of the 14th European Conference on Computer Vision. 2016: 694-711.
[23] GATYS L A, ECKER A S, BETHGE M. Image style transfer using convolutional neural networks[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2016:2414-2423.
[24] OLGA R, JIA D, HAO S, et al. ImageNet large scale visual recognition challenge[J]. International Journal of Computer Vision, 2015,115(3):211-252.
[25] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[J]. arXiv preprint arXiv:1409.1556, 2014.
[26] ISOLA P, ZHU J Y, ZHOU T H, et al. Image-to-image translation with conditional adversarial networks[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2017:5967-5976.
[27] SHI W Z, CABALLERO J, HUSZAR F, et al. Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2016:1874-1883.