LI Shi-bao, CONG Yu-jie. ZigBee Indoor Location Algorithm Based on Dynamic Modification of RSSI Parameters[J]. Computer and Modernization, 2024, 0(01): 35-40.
[1] XUE H, CHEN B, WAN J W. A distributed target tracking algorithm based on asynchronous wireless sensor networks[C]// 2009 International Conference on Electronic Computer Technology. 2009:549-553.
[2] BOANO C A, TSIFTES N, VOIGT T, et al. The impact of temperature on outdoor industrial sensornet applications[J]. IEEE Transactions on Industrial Informatics, 2010,6(3):451-459.
[3] XIAO L, BEHBOODI A, MATHAR R. A deep learning approach to fingerprinting indoor localization solutions[C]// 2017 27th International Telecommunication Networks and Applications Conference (ITNAC). 2017:1-7.
[4] AHMADI H, VIANI F, BOUALLGUE R. An accurate prediction method for moving target localization and tracking in wireless sensor networks[J]. Ad Hoc Networks, 2018,70:14-22.
[5] CHEIKHROUHOU O, BHATTI G M, ALROOBAEA R. A hybrid DV-Hop algorithm using RSSI for localization in large-scale wireless sensor networks[J]. Sensors, 2018,18(5):1469. DOI: 10.3390/s18051469.
[6] XU Y M, ZHOU J, ZHANG P. RSS-based source localization when path-loss model parameters are unknown[J]. IEEE Communications Letters, 2014,18(6):1055-1058.
[7] 冯秀芳,吕淑芳. 基于RSSI和分步粒子群算法的无线传感器网络定位算法[J]. 控制与决策, 2014, 29(11):1966-1972.
[8] 程伟,史浩山,王庆文. 基于差分修正的传感器网络加权质心定位算法[J]. 系统仿真学报, 2012,24(2):389-393.
[9] 韩江洪,祝满拳,马学森,等. 基于RSSI的极大似然与加权质心混合定位算法[J]. 电子测量与仪器学报, 2013,27(10):937-943.
[10] 聂尔豪,于重重,苏维均,等. Wi-Fi实时定位算法研究[J]. 计算机应用研究, 2014,31(7):2164-2167.
[11] 朱明辉,张会清. 基于RSSI的室内测距模型的研究[J]. 传感器与微系统, 2010(8):19-22.
[12] 封小钰,周慧雯,许朝伍. 基于无线传感网络的改进质心加权定位算法[J]. 武汉理工大学学报(信息与管理工程版), 2015,37(2):131-134
[13] 唐琳,夏越. 基于定向天线的无线传感网络环境自适应定位算法[J]. 电信科学, 2012,28(7):80-85.
[14] 谭志,张卉. 无线传感器网络RSSI定位算法的研究与改进[J]. 北京邮电大学学报, 2013,36(3):88-91.
[15] 赵大龙,白凤山,董思宇,等. 一种基于卡尔曼和线性插值滤波的改进三角质心定位算法[J]. 传感技术学报, 2015,28(7):1086-1090.
[16] LUOMALA J, HAKALA I. Analysis and evaluation of adaptive RSSI-based ranging in outdoor wireless sensor networks[J]. Ad Hoc Networks, 2019,87:100-112.
[17] LUOMALA J, HAKALA I. Effects of temperature and humidity on radio signal strength in outdoor wireless sensor networks[C]// 2015 Federated Conference on Computer Science and Information Systems (FedCSIS). 2015:1247-1255.
[18] GUIDARA A, FERSI G, DERBEL F, et al. Impacts of temperature and humidity variations on RSSI in indoor wireless sensor networks[J]. Procedia Computer Science, 2018,126:1072-1081.
[19] GUIDATA A, DERBEL F. A real-time indoor localization platform based on wireless sensor networks[C]// 2015 IEEE 12th International Multi-Conference on Systems, Signals & Devices (SSD15). 2015:1-8.
[20] LIU H,DARABI H,BANERJEE P, et al. Survey of wireless indoor positioning techniques and systems[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 2007,37(6):1067-1080.
[21] LIU W, KULIN M, KAZAZ T, et al. Wireless technology recognition based on RSSI distribution at sub-nyquist sampling rate for constrained devices[J]. Sensors, 2017,17(9). DOI: 10.3390/s17092081.
[22] RAO S N, BABU L K, PARTHASARATHY V. Effect of environmental parameters on long range Wi-Fi connectivity[C]// 2017 8th International Conference on Computing, Communication and Networking Technologies (ICCCNT). 2017:1-6.
[23] 李江,王义伟,魏超,等. 卡尔曼滤波理论在电力系统中的应用综述[J]. 电力系统保护与控制, 2014(6):135-144.
[24] 蔡博,高宏力,宋兴国,等. 基于改进增量卡尔曼滤波算法的UWB室内定位研究[J]. 机械设计与制造, 2020(2):22-25.
[25] 安雷,张国良,汤文俊. 基于RSSI的机器人室内卡尔曼滤波定位算法研究[J]. 计算机工程与应用, 2012(8):230-232
[26] 仲江涛,秦斌,吴健春,等. 基于Kalman滤波的Chan室内定位算法改进[J]. 通信技术, 2017(10):2223-2228.
[27] BIANCHI V, CIAMPOLINI P, De MUNARI I. RSSI-based indoor localization and identification for ZigBee wireless sensor networks in smart homes[J]. IEEE Transactions on Instrumentation and Measurement, 2018,68(2): 566-575.